

Automation1 iXC4e and XC4e PWM High-Performance Digital Drives

HARDWARE MANUAL

Revision 2.05

GLOBAL TECHNICAL SUPPORT

Go to the Global Technical Support Portal for information and support about your Aerotech, Inc. products. The website supplies software, product manuals, Help files, training schedules, and PC-to-PC remote technical support. If necessary, you can complete Product Return (RMA) forms and get information about repairs and spare or replacement parts. To get help immediately, contact a service office or your sales representative. Include your customer order number in your email or have it available before you call.

This manual contains proprietary information and may not be reproduced, disclosed, or used in whole or in part without the express written permission of Aerotech, Inc. Product names mentioned herein are used for identification purposes only and may be trademarks of their respective companies.

Copyright © 2018-2022, Aerotech, Inc., All rights reserved.

Table of Contents

Automation1 iXC4e and XC4e PWM High-Performance Digital Drives	1
Table of Contents	
List of Figures	
List of Tables	
EU Declaration of Conformity	
Agency Approvals	
Safety Procedures and Warnings	1′
Handling and Storage	
Installation Overview	
Chapter 1: iXC4e/XC4e Overview	
1.1. Electrical Specifications	2 <i>°</i>
1.1.1. System Power Requirements	
1.2. Mechanical Specifications	
1.2.1. Mounting and Cooling	22
1.2.2. Dimensions	
1.3. Environmental Specifications	25
1.4. Drive and Software Compatibility	25
Chapter 2: Installation and Configuration	2-
Chapter 2: Installation and Configuration	
2.1. Input Power Connections	
2.1.1. Control Supply Connector	
2.1.2. Motor Supply Connector	۷2
2.1.3. Transformer Options	29
2.1.4. Minimizing Noise for EMC/CE Compliance	عد
2.2. Motor Power Output Connector	
2.2.1. Brushless Motor Connections	
2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing	
2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing	4(
2.2.2. DC Brush Motor Connections	
2.2.2.1. DC Brush Motor Phasing	
2.2.3. Stepper Motor Connections	
2.2.3.1. Stepper Motor Phasing	
2.2.4. Three Phase Stepper Motor Connections	
2.2.4.1. Stepper Motor Phasing	
2.3. Feedback Connector	
2.3.1. Primary Encoder Inputs	
2.3.1.1. Square Wave Encoder (Primary)	
2.3.1.2. Absolute Encoder (Primary)	
2.3.1.3. Sine Wave Encoder (Primary) [-MX2/-MX3 Option]	
2.3.1.4. Encoder Phasing	5(
2.3.2. Hall-Effect Inputs	5
2.3.3. Thermistor Input	52
2.3.4. Encoder Fault Input	53
2.3.5. End of Travel and Home Limit Inputs	54
2.3.5.1. End of Travel and Home Limit Phasing	56
2.3.6. Brake Outputs	5,
2.4. Safe Torque Off Input (STO)	
2.4.1. STO Standards	
2.4.2. STO Functional Description	
2.4.3. STO Startup Validation Testing	62
2.4.4. STO Diagnostics	
2.5. Auxiliary I/O Connector	
2.5.1. Auxiliary Encoder Inputs	
2.5.1.1. Square Wave Encoder (Auxiliary)	
2.5.1.2. Absolute Encoder (Auxiliary)	
2.5.1.3. Sine Wave Encoder (Auxiliary) [-MX3 Option]	
2.5.2. Position Synchronized Output (PSO)	
2.5.3. Digital Outputs	72

2.5.4. Digital Inputs	75
	77
2.5.6. Analog Output 0	78
	79
	80
	82
	84
	84 85
2.11. System interconnection	ition
·	
Chapter 3: -EB1 Option Expansion Board	
	90
	94
	97
	98
3.5. PSO Interface [-EB1]	99
Chapter 4: Cables and Accessories	101
	102
4.2. Handwheel Interface	104
Chapter 5: Maintenance	105
·	
Appendix A: Warranty and Field Service	109
Appendix B: Revision History	111
••	
Indev	112

List of Figures

Figure 1-1:	iXC4e Digital Drive-Based Controller	17
Figure 1-2:	XC4e Digital Drive	
Figure 1-3:	Functional Diagram	20
Figure 1-4:	Dimensions	23
Figure 1-5:	Dimensions [-EB1]	24
Figure 2-1:	Control Supply Connections	27
Figure 2-2:	Motor Supply Connections	28
Figure 2-3:	TV0.3-28-56-ST Transformer Control and Motor Power Wiring (40 VDC Bus)	30
Figure 2-4:	TV0.3-28-56-ST Transformer Control and Motor Power Wiring (80 VDC Bus)	31
Figure 2-5:	TV0.3-28-56-ST Transformer Control and Motor Power Wiring (160 VDC Bus)	32
Figure 2-6:	TV0.3-28 Transformer Control and Motor Power Wiring (40 VDC Bus)	33
Figure 2-7:	TV0.3-56 Transformer Control and Motor Power Wiring (80 VDC Bus)	34
Figure 2-8:	TM3/TM5 Transformer Control and Motor Power Wiring	35
Figure 2-9:	Brushless Motor Configuration	38
Figure 2-10:	Positive Motor Direction	39
Figure 2-11:	Encoder and Hall Signal Diagnostics	39
Figure 2-12:	Brushless Motor Phasing Oscilloscope Example	40
Figure 2-13:	Brushless Motor Phasing Goal	40
Figure 2-14:	DC Brush Motor Configuration	41
Figure 2-15:	Positive Motor Direction	41
Figure 2-16:	Stepper Motor Configuration	42
Figure 2-17:	Positive Motor Direction	42
Figure 2-18:	Three Phase Stepper Motor Configuration	43
Figure 2-19:	Positive Motor Direction	43
Figure 2-20:	Square Wave Encoder Schematic (Feedback Connector)	46
Figure 2-21:	Absolute Encoder Schematic (Feedback Connector)	
Figure 2-22:	Sine Wave Encoder Phasing Reference Diagram	48
Figure 2-23:		
Figure 2-24:		
Figure 2-25:		
Figure 2-26:	Hall-Effect Inputs Schematic (Feedback Connector)	
Figure 2-27:		
Figure 2-28:	·	
Figure 2-29:	•	
Figure 2-30:	End of Travel and Home Limit Input Schematic (Feedback Connector)	
Figure 2-31:		
Figure 2-32:		
Figure 2-33:		
Figure 2-34:	STO Timing	
Figure 2-35:		
Figure 2-36:		
Figure 2-37:	· · · · · · · · · · · · · · · · · · ·	
Figure 2-38:	Sine Wave Encoder Schematic (Auxiliary I/O Connector)	
Figure 2-39:		
Figure 2-40:		
Figure 2-41:	Digital Outputs Connected in Current Sourcing Mode	
Figure 2-42:	Digital Outputs Connected in Current Sinking Mode	
Figure 2-43:		
<u> </u>	· ,	

Figure 2-44:	Digital Inputs Connected to Current Sourcing Devices	76
Figure 2-45:	Digital Inputs Connected to Current Sinking Devices	76
Figure 2-46:	High-Speed Inputs	77
Figure 2-47:	Analog Output 0 Schematic	78
Figure 2-48:	Analog Input 0 Schematic	79
Figure 2-49:	Drive-Based System Wiring Drawing (Best Practice)	85
Figure 2-50:	PC-Based System Wiring Drawing (Best Practice)	85
Figure 2-51:	Drive-Based Controller System Interconnection (Best Practice)	86
Figure 2-52:	PC-Based Controller System Interconnection (Best Practice)	87
Figure 3-1:	-EB1 I/O Option Board Connectors (iXC4e shown)	89
Figure 3-2:	Digital Outputs Schematic [-EB1]	92
Figure 3-3:	Digital Outputs Connected in Current Sourcing Mode [-EB1]	93
Figure 3-4:	Digital Outputs Connected in Current Sinking Mode [-EB1]	93
Figure 3-5:	Digital Inputs Schematic [-EB1]	95
Figure 3-6:	Digital Inputs Connected to Current Sourcing (PNP) Devices [-EB1]	96
Figure 3-7:	Digital Inputs Connected to Current Sinking (NPN) Devices [-EB1]	96
Figure 3-8:	Analog Output Typical Connection [-EB1]	97
Figure 3-9:	Analog Input Typical Connection [-EB1]	98
Figure 3-10:	PSO Output Sources Current	100
Figure 3-11:	PSO Output Sinks Current	100
Figure 3-12:	PSO TTL Outputs Schematic	100
Figure 4-1:	Two Axis Joystick Interface (to the Aux I/O of two drives)	102
Figure 4-2:	Two Axis Joystick Interface (to the I/O board)	103
Figure 4-3:	Handwheel Interconnection to Aux I/O Connector	104
Figure 4-4:	Handwheel Interconnection to the Aux I/O through a BBA32 Module	104

List of Tables

Table 1-1:	Features and Options	19
Table 1-2:	Electrical Specifications	
Table 1-3:	Mounting Specifications	
Table 1-4:	Environmental Specifications	
Table 1-5:	Drive and Software Compatibility	25
Table 2-1:	Control Supply Wiring Specifications	27
Table 2-2:	Mating Connector Part Numbers for the Control Supply Connector	
Table 2-3:	Motor Supply Connector Wiring Specifications	28
Table 2-4:	Mating Connector Part Numbers for the Motor Supply Connector	28
Table 2-5:	Nominal Motor Operating Voltages / Required AC Voltages	29
Table 2-6:	Transformer Options	29
Table 2-7:	Motor Power Output Connector Pinout	37
Table 2-8:	Mating Connector Part Numbers for the Motor Power Output Connector	37
Table 2-9:	Wire Colors for Aerotech-Supplied Brushless Motor Cables	38
Table 2-10:	Hall Signal Diagnostics	39
Table 2-11:	Wire Colors for Aerotech-Supplied DC Brush Motor Cables	41
Table 2-12:	Wire Colors for Aerotech-Supplied Stepper Motor Cables	42
Table 2-13:	Feedback Connector Pinout	44
Table 2-14:	Mating Connector Part Numbers for the Feedback Connector	44
Table 2-15:	Multiplier Options	45
Table 2-16:	Primary Encoder Input Pins on the Feedback Connector	45
Table 2-17:	Square Wave Encoder Specifications	46
Table 2-18:	Sine Wave Encoder Specifications	48
Table 2-19:	Hall-Effect Feedback Pins on the Feedback Connector	51
Table 2-20:	Thermistor Input Pin on the Feedback Connector	52
Table 2-21:	Encoder Fault Input Pin on the Feedback Connector	53
Table 2-22:	End of Travel and Home Limit Pins on the Feedback Connector	54
Table 2-23:	Brake Output Pins on the Feedback Connector	57
Table 2-24:	Brake Control Specifications	57
Table 2-25:	STO Connector Pinout	58
Table 2-26:	Mating Connector Part Numbers for the STO Connector	58
Table 2-27:	STO Electrical Specifications	59
Table 2-28:	STO Standards	60
Table 2-29:	STO Standards Data	60
Table 2-30:	STO Signal Delay	62
Table 2-31:	Motor Function Relative to STO Input State	62
Table 2-32:	STO Timing	63
Table 2-33:	Auxiliary I/O Connector Pinout	64
Table 2-34:	Mating Connector Part Numbers for the Auxiliary I/O Connector	64
Table 2-35:	Auxiliary Encoder Pins on the Auxiliary I/O Connector	65
Table 2-36:	Square Wave Encoder Specifications	66
Table 2-37:	Sine Wave Encoder Specifications	
Table 2-38:	PSO Specifications	70
Table 2-39:	PSO Pins on the Auxiliary I/O Connector	
Table 2-40:	Digital Output Specifications	72
Table 2-41:	Digital Output Pins on the Auxiliary I/O Connector	72
Table 2-42:	Digital Input Specifications	75
Table 2-43:	Digital Input Pins on the Auxiliary I/O Connector	

Table 2-44:	High-Speed Input Specifications	
Table 2-45:	High-Speed Input Pins on the Auxiliary I/O Connector	77
Table 2-46:	Analog Output Specifications	78
Table 2-47:	Analog Output Pins on the Auxiliary I/O Connector	78
Table 2-48:	Analog Input Specifications	
Table 2-49:	Analog Input Pins on the Auxiliary I/O Connector	79
Table 2-50:	Brake Power Supply Connector Pinout	80
Table 2-51:	Mating Connector Part Numbers for the Brake Power Supply Connector	80
Table 2-52:	HyperWire Card Part Number	81
Table 2-53:	HyperWire Cable Part Numbers	81
Table 2-54:	-SX1 Component Information	82
Table 2-55:	Maximum Additional Storage Energy for a Standard iXC4e/XC4e	83
Table 2-56:	Sync-Related Functions	84
Table 2-57:	Sync Port Cables	84
Table 3-1:	Digital Output Specifications [-EB1]	90
Table 3-2:	Digital Output 1 Connector Pinout [-EB1]	91
Table 3-3:	Mating Connector Part Numbers for the Digital Output 1 Connector [-EB1]	91
Table 3-4:	Digital Output 2 Connector Pinout [-EB1]	91
Table 3-5:	Mating Connector Part Numbers for the Digital Output 2 Connector [-EB1]	91
Table 3-6:	Digital Input Specifications [-EB1]	94
Table 3-7:	Digital Input 1 Connector Pinout [-EB1]	94
Table 3-8:	Mating Connector Part Numbers for the Digital Input 1 Connector [-EB1]	
Table 3-9:	Digital Input 2 Connector Pinout [-EB1]	
Table 3-10:	Mating Connector Part Numbers for the Digital Input 2 Connector [-EB1]	
Table 3-11:	Analog Output Specifications [-EB1]	97
Table 3-12:	Analog Output Connector Pinout [-EB1]	97
Table 3-13:	Mating Connector Part Numbers for the Analog Output Connector [-EB1]	97
Table 3-14:	Differential Analog Input Specifications [-EB1]	
Table 3-15:	Analog Input Connector Pinout [-EB1]	
Table 3-16:	Mating Connector Part Numbers for the Analog Input Connector [-EB1]	
Table 3-17:	PSO Specifications [-EB1]	
Table 3-18:	PSO Interface Connector Pinout [-EB1]	
Table 3-19:	Mating Connector Part Numbers for the PSO Interface Connector [-EB1]	
Table 4-1:	Standard Interconnection Cables	
Table 5-1:	LED Description	
Table 5-2:	Troubleshooting	
Table 5-3:	Preventative Maintenance	106
Table 5-4.	Control Roard Fuse Specifications	107

EU Declaration of Conformity

Manufacturer Aerotech, Inc. **Address** 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Product iXC4e/XC4e

Model/Types ΑII

This is to certify that the aforementioned product is in accordance with the applicable requirements of the following directive(s):

2014/30/EU Electromagnetic Compatibility (EMC)

2014/35/EU Low Voltage Directive **Machinery Directive** 2006/42/EC RoHS 2 Directive 2011/65/EU

Amendment RoHS 3 Directive EU 2015/863

and has been designed to be in conformity with the applicable requirements of the following standard(s) when installed and used in accordance with the manufacturer's supplied installation instructions.

EN 61010-1:2010/A1:2016 Safety Requirements for Electrical Equipment **EMC Requirements for Power Drives** EN 61800-3:2004/A1:2011 Electrical Safety for Power Drive Systems IEC 61800-5-1:2016 Functional Safety for Power Drive Systems IEC 61800-5-2:2016

Conducted and Radiated Emissions EN 55011:2000/A2:2003 Conducted and Radiated Emissions EN 55022:1998

Authorized Representative

/ Simon Smith, European Director

Aerotech Ltd

The Old Brick Kiln, Ramsdell, Tadley

Hampshire RG26 5PR

UK

Engineer Verifying

Compliance

Clar Robert / Alex Weibel

Aerotech, Inc. 101 Zeta Drive

Pittsburgh, PA 15238-2811

USA

Date 2/28/2022

Agency Approvals

Aerotech tested its XC4e drives and found that they obey the standards that follow:

10

IMPORTANT: iXC4e certification is pending.

Approval: CUS NRTL

Approving Agency: TUV SUD America Inc. **Certificate #:** U8V 068995 0028 Rev. 02

Standards: CAN/CSA-C22.2 No. 61010-1:2012,

EN 61010-1:2010/A1:2016,

UL 61010-1:2012

Approval: Safety Components (STO)

Approving Agency: TUV SUD

Certificate #: Z10 068995 0030 Rev. 00

Standards: EN ISO 13849-1:2015 (up to PL e),

IEC 61508-1:2010 (up to SIL3), IEC 61508-2:2010 (up to SIL3),

IEC 61800-5-2:2016,

IEC 62061:2005 (up to SILCL3),

IEC 62061:2005/AMD1:2012 (up to SILCL3), IEC 62061:2005/AMD2:2015 (up to SILCL3)

Visit https://www.tuev-sued.de/product-testing/certificates to view Aerotech's TÜV SÜD certificates. Type the certificate number listed above in the search bar or type "Aerotech" for a list of all Aerotech certificates.

Safety Procedures and Warnings

IMPORTANT: This manual tells you how to carefully and correctly use and operate the drive.

• Read all parts of this manual before you install or operate the drive or before you do maintenance to your system.

- To prevent injury to you and damage to the equipment, obey the precautions in this manual.
- All specifications and illustrations are for reference only and were complete and accurate as of the release of this manual. To find the newest information about this product, refer to www.aerotech.com.

If you do not understand the information in this manual, contact Aerotech Global Technical Support.

IMPORTANT: This product has been designed for light industrial manufacturing or laboratory environments. If the product is used in a manner not specified by the manufacturer:

- The protection provided by the equipment could be impaired.
- The life expectancy of the product could be decreased.

Safety notes and symbols are placed throughout this manual to warn you of the potential risks at the moment of the safety note or if you fail to obey the safety note.

The voltage can cause shock, burn, or death.

You are at risk of physical injury. You could damage the drive.

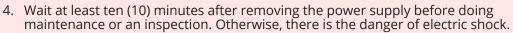
A surface can be hot enough to burn you.

Your actions, the temperature of the system, or the condition of the atmosphere that surround the system could start a fire.

Components are sensitive to electrostatic discharge.

Unsecured cables could cause you to:

- trip and fall
- drag the product off of its mounting location
- damage the cable connections.



A blue circle symbol is an action or tip that you should obey. Some examples include:

- General tip
- Read the manual/section
- Wear protective safety equipment (eye protection, ear protection, gloves)
- If applicable, do not lift unassisted

DANGER: To decrease the risk of electrical shock, injury, death, and damage to the equipment, obey the precautions that follow.

- 1. Before you do maintenance to the equipment, disconnect the electrical power.
- 2. Restrict access to the drive when it is connected to a power source.
- 3. Do not connect or disconnect electrical components, wires, and cables while this product is connected to a power source.

- 5. Supply each operator with the necessary protection from live electrical circuits.
- 6. Make sure that all components are grounded correctly and that they obey the local electrical safety requirements.
- 7. Install the necessary precautions to supply safety and protection to the operator.

DANGER: System travel can cause crush, shear, or pinch injuries. Restrict access to all motor and stage parts while your system is connected to a power source.

WARNING: To prevent damage to the equipment and decrease the risk of electrical shock and injury, obey the precautions that follow.

- 1. Make sure that all system cables are correctly attached and positioned.
- 2. Do not use the cables or the connectors to lift or move this product.
- 3. Use this product only in environments and operating conditions that are approved in this manual.
- 4. Only trained operators should operate this equipment.

Handling and Storage

Unpacking the drive

IMPORTANT: All electronic equipment and instrumentation is wrapped in antistatic material and packaged with desiccant. Ensure that the antistatic material is not damaged during unpacking.

Inspect the shipping container for any evidence of shipping damage. If any damage exists, notify the shipping carrier immediately.

Remove the packing list from the shipping container. Make sure that all the items specified on the packing list are contained within the package.

The documentation for the drive is on the included installation device. The documents include manuals, interconnection drawings, and other documentation pertaining to the system. Save this information for future reference. Additional information about the system is provided on the Serial and Power labels that are placed on the chassis.

The system serial number label contains important information such as the:

- Customer order number (please provide this number when requesting product support)
- · Drawing number
- System part number

Handling

IMPORTANT: It is the responsibility of the customer to safely and carefully lift and move the drive.

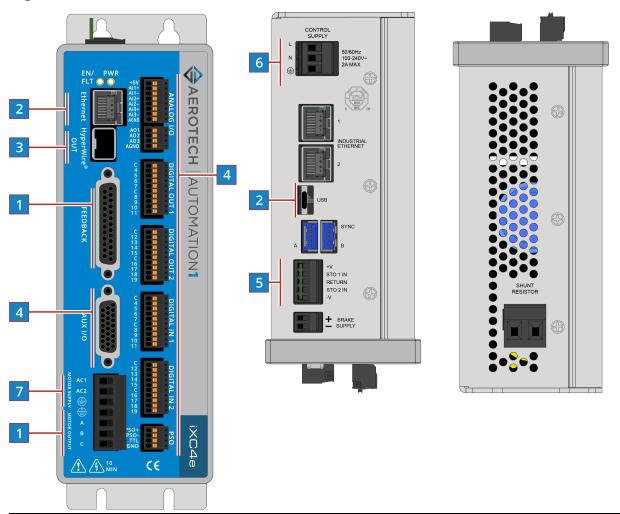
- Be careful when you move or transport the drive.
- Refer to Section 1.2. Mechanical Specifications for dimensions and weight specifications.
- Retain the shipping materials for future use.
- Transport or store the drive in its protective packaging.

WARNING: Electrostatic Discharge (ESD) Sensitive Components!

You could damage the power supply or drives if you fail to observe the correct ESD practices.

Wear an ESD wrist strap when you handle, install, or do service to the system assembly.

Storage


Store the drive in the original shipping container. If the original packaging included ESD protective packaging, make sure to store the drive in it. The storage location must be dry, free of dust, free of vibrations, and flat.

Refer to Section 1.3. Environmental Specifications

Installation Overview

The images that follow show the order in which to make connections and settings that are typical to the iXC4e/XC4e. If a custom interconnect drawing was supplied with your system, that drawing is on your Storage Device and shows as a line item on your Sales Order in the Integration section.

Figure 1: Installation Connection Overview for the iXC4e

1	Connect the motor to the amplifier Motor Output connector.	Section 2.2.
	Connect the motor to the amplifier Feedback connector.	Section 2.3.
2	Connect the PC to the USB or Ethernet port.	N/A
3	Connect the next drive in the system to the HyperWire Out port.	Section 2.7.
4	Connect additional I/O as required by your application	Section 2.5./
*	(if you purchased the I/O option).	Chapter 3
5	Connect the Safe Torque Off (STO).	Section 2.4.
6	Connect the power supply to the Control Supply connector.	Section 2.1.1.
7	Connect the motor power to the Motor Supply connector.	Section 2.1.2.

ARROTECH AUTOMATION

STOTIN

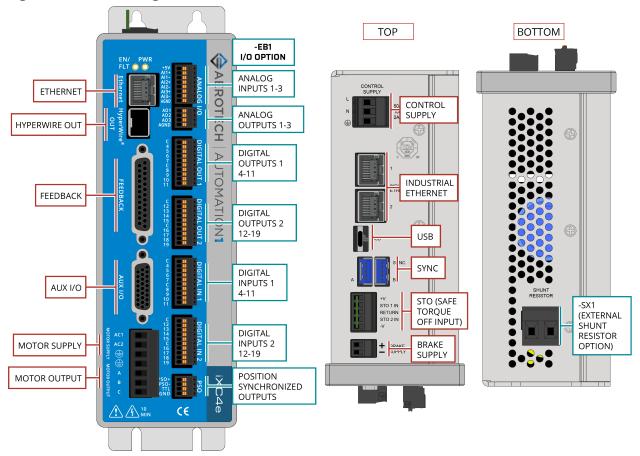
RETURN

R

Figure 2: Installation Connection Overview for the XC4e

4	Connect the motor to the amplifier Motor Output connector.	Section 2.2.
	Connect the motor to the amplifier Feedback connector.	Section 2.3.
2	Connect a PC or drive-based controller HyperWire port to the HyperWire In	Section 2.7.
	port.	Section 2.7.
2	Connect additional I/O as required by your application	Section 2.5./
3	(if you purchased the I/O option).	Chapter 3
4	Connect the Safe Torque Off (STO).	Section 2.4.
5	Connect the power supply to the Control Supply connector.	Section 2.1.1.
6	Connect the motor power to the Motor Supply connector.	Section 2.1.2.

This page intentionally left blank.


Chapter 1: iXC4e/XC4e Overview

The iXC4e is a high-performance digital drive-based controller. It runs the Automation1-iSMC controller to generate commands for itself as well as for additional drives on the chain.

The XC4e is a high performance digital drive. The XC4e is based on the HyperWire communication protocol and receives commands from a PC or drive-based controller.

Both drives provide deterministic behavior, auto-identification, and are fully software configurable. A double precision floating point DSP controls the digital PID and current loops. Both drives offer standard Safe Torque Off (STO) inputs and optional Position Synchronized Output (PSO) outputs. And both drives are offered with optional encoder interpolation features (-MX2/-MX3), an auxiliary encoder input for dual loop control, dedicated analog and digital I/O (expandable with the -EB1 option), and separate power connections for motor and control supply voltages.

Figure 1-1: iXC4e Digital Drive-Based Controller

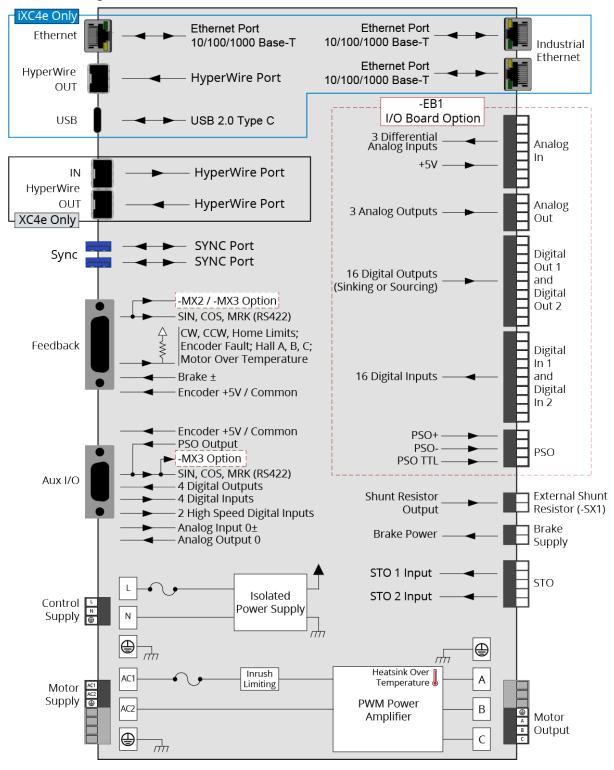
воттом TOP -EB1 I/O OPTION ANALOG INPUTS 1-3 CONTROL HYPERWIRE ANALOG SUPPLY **OUTPUTS 1-3** DIGITAL OUTPUTS 1 4-11 FEEDBACK FEEDBACK DIGITAL OUTPUTS 2 12-19 SYNC DIGITAL AUX I/O INPUTS 1 AUX I/O 4-11 STO (SAFE -SX1 TORQUE (EXTERNAL OFF INPUT) SHUNT RESISTOR OPTION) DIGITAL INPUTS 2 BRAKE AC2 MOTOR SUPPLY 12-19 **SUPPLY** POSITION MOTOR OUTPUT SYNCHRONIZED OUTPUTS 10 MIN Œ

Figure 1-2: XC4e Digital Drive

Table 1-1: Features and Options

Standard Features

- 100-240 VAC control supply inputs (Section 2.1.1.) 0-240 VAC motor supply inputs (producing 340 VDC) (Section 2.1.2.)
- Line driver square wave quadrature encoder input for position and velocity feedback (Section 2.3.1.)
- Absolute Encoder support on the Feedback Connector (Section 2.3.1.2.)
- One fail-safe brake output (Section 2.3.6.)
- Two STO sense inputs (Section 2.4.)
- Line driver square wave auxiliary quadrature encoder input or output for PSO (Section 2.5.1.)
- Absolute Encoder support on the Auxiliary I/O Connector (Section 2.5.1.2.)
- Four digital user outputs (Section 2.5.3.)
- Six digital user inputs


 - Four Digital Inputs (Section 2.5.4.)
 Two High-Speed Inputs (Section 2.5.5.)
- One 16-bit analog output (±10 V) (Section 2.5.6.)
- One 16-bit differential analog input (± 10 V) (Section 2.5.7.) One 10/100/1000 BASE-T Ethernet Port (**iXC4e Only**)
- One USB 2.0 Type C Port (iXC4e Only)
- Two 10/100/1000 BASE-T Industrial Ethernet Ports (iXC4e Only)

Options	0/1000 BASE-1 industrial Ethernet Forts (IAC4C Only)			
	(Section 1.1)			
	Peak Current (Section 1.1.)			
-10	10 A Peak, 5 A Continuous Current			
-20	20 A Peak, 10 A Continuous Current			
-30	30 A Peak, 10 A Continuous Current			
Expansion Bo	ard (Chapter 3)			
-EB0	No expansion board			
-EB1	 I/O expansion board Three 16-bit analog outputs (±10 V) Three 16-bit differential analog inputs (±10 V) 16 digital logic inputs (5 - 24 VDC); connect to current sourcing or sinking devices 16 digital logic outputs (5 - 24 VDC); user defined as current sourcing or sinking Digital logic laser firing (PSO) output 			
Multiplier (Se	ection 2.3.1.3.)			
-MX0	No encoder multiplier			
-MX2	Interpolation circuit allowing for analog sine wave input on the primary encoder channel with an interpolation factor of 65,536.			
-MX3	Interpolation circuit allowing for analog sine wave input on the primary encoder channel with an interpolation factor of 65,536 and an auxiliary encoder channel with an interpolation factor of 16,384.			
PSO (Section	2.5.2.)			
-PSO1	One-axis PSO firing (includes One-axis Part-Speed PSO)			
-PSO2	Two-axis PSO firing (includes Two-axis Part-Speed PSO)			
-PSO3	Three-axis PSO firing (includes Three-axis Part-Speed PSO)			
-PSO5	Two-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the commanded vector velocity of up to 2 axes (includes One-Axis PSO).			
-PSO6	Three-axis Part-Speed PSO firing, which uses the PSO firing circuit based off of the commanded vector velocity of 3 or more axes (includes One-Axis PSO).			
External Shui	nt (Section 2.8.)			
-SX0	No connector for the External Shunt			
-SX1	Connection provided for an external shunt resistor network			
Version				
-DEFAULT	Firmware Matches Software Line			
-LEGACY	Legacy Firmware Version X.XX.XXX			

The block diagram that follows shows a summary of the connector signals.

Figure 1-3: Functional Diagram

Functional Diagram

1.1. Electrical Specifications

Table 1-2: Electrical Specifications

Description		-10 Option	-20 Option	-30 Option
	Input Voltage	0-240 VAC		
	Input Frequency	50-60 Hz		
Motor Supply	Inrush Current	34 A _{pk} @ 240 V		
Wotor Supply	Max Continuous	5 A _{rms}	10 A _{rms}	10 A _{rms}
	Input Current			
	Input Current	Refer to Section	1.1.1. System Powe	er Requirements
	Input Voltage		100-240 VAC	
Control Supply	Input Frequency		50-60 Hz	
Control Supply	Inrush Current		68 A _{pk} @ 240 V	
	Input Power		10 W	
Output Voltage (1)			340 VDC	
Peak Output Curr	ent (1 second) ⁽³⁾	10 A	20 A	30 A
Continuous Outpu	ut Current ⁽³⁾	5 A	10 A	10 A
Power Amplifier B	andwidth	2500 Hz maximum (software selectable)		
Power Amplifier E	fficiency	85% - 95% ⁽²⁾		
PWM Switching Fr	equency	20 kHz		
Minimum Load In	ductance	0.1 mH @ 160 VDC (1 mH @ 320 VDC)		
User Power Suppl	y Output	5 VDC (@ 500 mA)		
Modes of Operation		Brushless; Brush; Stepper		
		Output short circuit; Peak over current; DC bus over		
Protective Features		voltage; RMS over current; Over temperature; Control power supply under voltage; Power stage bias supply		
		under voltage		
Isolation			rmer isolation betwe	een control and
		power stages.		
(1) AC input voltage an	id load dependent. Loutput power: efficiency			

⁽²⁾ Dependent on total output power: efficiency increases with increasing output power.

1.1.1. System Power Requirements

The following equations can be used to determine total system power requirements. The actual power required from the mains supply will be the combination of actual motor power (work), motor resistance losses, and efficiency losses in the power electronics or power transformer.

Use an EfficiencyFactor of approximately 90% in the following equations.

Brushless Motor

Output Power

Rotary Motors Power Output [W] = Torque $[N \cdot m]$ * Angular velocity[rad/sec]

Linear Motors Power Output [W] = Force [N] * Linear velocity[m/sec]

Rotary or Linear Motors Power Output [W] = Bemf [V] * I(rms) * 3

Power Loss = $3 * I(rms)^2 * R(line-line)/2$

Power Input = (Power Output + Power Loss) / EfficiencyFactor

DC Brush Motor

Power Output [W] = Torque [N·m] * Angular velocity[rad/sec]

Power Loss = $I(rms)^2 * R$

Power Input = (Pout + Ploss) / EfficiencyFactor

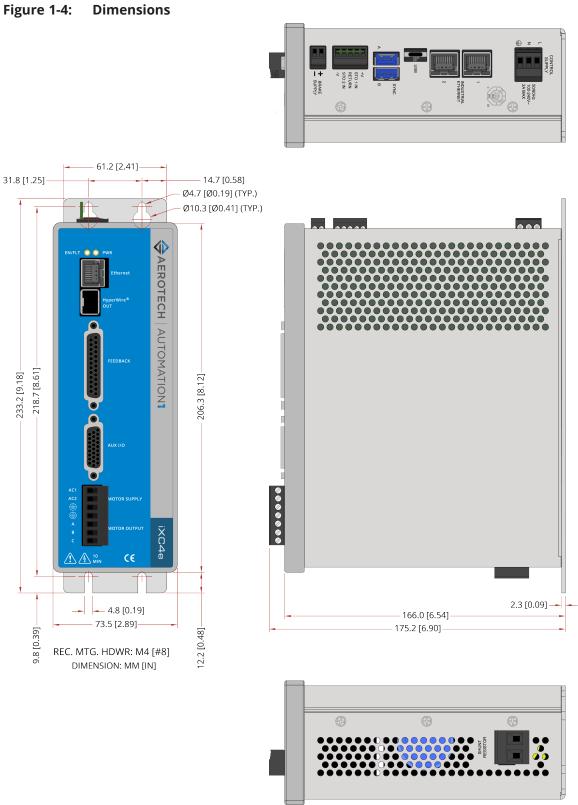
⁽³⁾ Current is measured as the peak amplitude in any motor phase

1.2. Mechanical Specifications

1.2.1. Mounting and Cooling

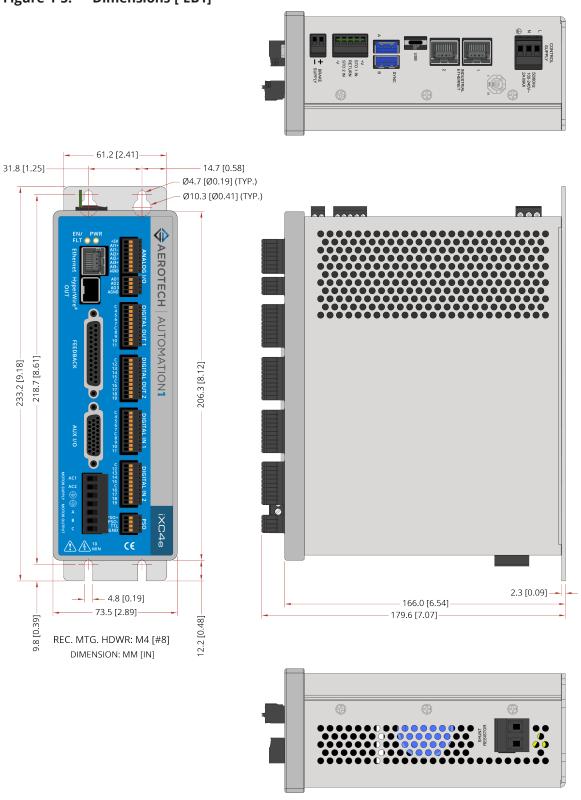
Install the drive in an IP54 compliant enclosure to comply with safety standards. Make sure that there is sufficient clearance surrounding the drive for free airflow and for the cables and connections.

IMPORTANT: The amount of airflow required to keep the drive temperature within a sufficient range is dependent on the operating conditions. You could be required to supply additional airflow to the drive.


Table 1-3: Mounting Specifications

		iXC4e/XC4e
Customer-Supplied Enclosure		IP54 Compliant
Weight		~2.36 kg
Mounting Hardware		M4 [#8] screws (four locations, not included)
Mounting Orientation		Vertical (typical)
Dimensions		Refer to Section 1.2.2. Dimensions
Minimum Clearance Airflow		~25 mm
Connectors		~100 mm
Operating Temperature		Refer to Section 1.3. Environmental Specifications

1.2.2. Dimensions


IMPORTANT: iXC4e and XC4e dimensions are the same. iXC4e is shown.

IMPORTANT: iXC4e-EB1 and XC4e-EB1 dimensions are the same. iXC4e-EB1 is shown.

Figure 1-5: Dimensions [-EB1]

1.3. Environmental Specifications

The environmental specifications are listed below.

Table 1-4: Environmental Specifications

Ambient	Operating: 0° to 40°C (32° to 104° F)
Temperature	Storage: -30° to 85°C (-22° to 185° F)
Humidity Non-condensing	The maximum relative humidity is 80% for temperatures that are less than 31°C and decreases linearly to 50% relative humidity at 40°C.
Operating Altitude	0 m to 2,000 m (0 ft to 6,562 ft) above sea level. If you must operate this product above 2,000 m or below sea level, contact Aerotech, Inc.
Pollution	Pollution Degree 2 Typically only nonconductive pollution occurs.
Operation	Use only indoors

1.4. Drive and Software Compatibility

This table shows the available drives and which version of the software first supported each drive. In the **Last Software Version** column, drives that show a specific version number are not supported after that version.

Table 1-5: Drive and Software Compatibility

Drive Type	Software	First Software Version	Last Software Version
iXC4e	Automation1	2.0.0	Current
XC4e	Automation1	1.2.0	Current
	A3200	6.04	Current

This page intentionally left blank.

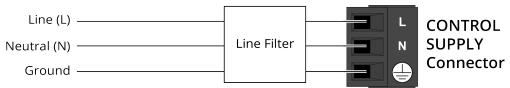
Chapter 2: Installation and Configuration

The sections in this chapter include details on how to set up the electrical and safety components of your system. Obey all safety warnings, including those in Safety Procedures and Warnings.

2.1. Input Power Connections

The drive has two AC input power connectors. One connector is for control power and the other connector is for motor power. For a full list of electrical specifications, refer to Section 1.1. Refer to Section 2.11. for a System Interconnection Drawing.

2.1.1. Control Supply Connector


The Control Supply input supplies power to the communications and logic circuitry of the drive . The $\bf L$ input is connected to an internal fuse. Refer to Table 5-4 for the internal fuse value and part number. The $\bf N$ input is not connected to an internal fuse. An external fuse will be required if $\bf N$ is not connected to Neutral.

The Control Supply contains an internal filter but you could be required to add an external filter for CE compliance. Install the external filter as close as possible to the drive. Use a Schaffner FN2080 filter, an Aerotech UFM-ST noise filter module, or equivalent device.

IMPORTANT: Refer to local electrical safety requirements to correctly size external system wires.

Figure 2-1: Control Supply Connections

Table 2-1: Control Supply Wiring Specifications

Pin	Description	Recommended Wire Size
L	Line (L): 100-240 VAC Control Power Input	0.8 mm ² (#18 AWG)
N	Neutral (N) or 100-240 VAC Control Power Input with external fuse	0.8 mm ² (#18 AWG)
	Protective Ground	0.8 mm ² (#18 AWG)

Table 2-2: Mating Connector Part Numbers for the Control Supply Connector

Туре	Aerotech	Third Party	Screw	Wire Size:
	P/N	P/N	Torque: N·m	mm² [AWG]
3-Pin Terminal Block	ECK02388	Phoenix 1756272	0.22 - 0.25	2.5 - 0.05 [14-30]

2.1.2. Motor Supply Connector

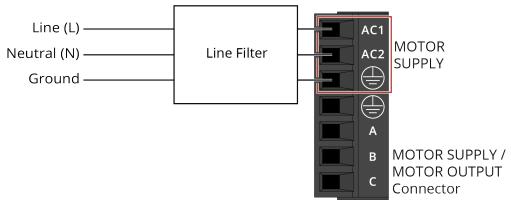
Motor power is applied to the **AC1** and **AC2** terminals of the Motor Supply connector.

Peak Current Option -10: The AC1 input is internally connected to a 5 A fuse.

Peak Current Option -20 and -30: The **AC1** input is internally connected to a 10 A fuse.

Refer to Table 5-4 for the internal fuse part numbers.

The AC2 input is not internally fused. An external fuse is required if AC2 is not connected to Neutral.


IMPORTANT: Before you operate the iXC4e/XC4e, install a ground connection for your safety and to prevent damage to the equipment.

For CE compliance, Aerotech recommends that you use an AC line filter. Connect the filter as close as possible to the drive. For more information about the AC line filter, refer to Section 2.1.4.

IMPORTANT: Refer to local electrical safety requirements to correctly size external system wires.

Figure 2-2: Motor Supply Connections

Table 2-3: Motor Supply Connector Wiring Specifications

Pin	Description	Recommended Wire Size
AC1	0-240 VAC Motor Power Input	1.3 mm ² (#16 AWG)
AC2	Neutral (N) or 240 VAC Motor Power Input with external fuse	1.3 mm ² (#16 AWG)
	Protective Ground	1.3 mm ² (#16 AWG)

Table 2-4: Mating Connector Part Numbers for the Motor Supply Connector

Туре	Aerotech	Third Part	Screw	Wire Size:
	P/N	P/N	Torque: Nm	mm²[AWG]
7-Pin Terminal Block	ECK02387	Phoenix 1756353	0.5 - 0.6	3.3 - 0.0516 [12-30]

2.1.3. Transformer Options

You can connect an external isolation transformer to the Motor Supply AC Input to reduce the operating voltage of the motor. Using a transformer can also reduce electrical noise.

Table 2-5: Nominal Motor Operating Voltages / Required AC Voltages

AC Voltage	DC Voltage
28	40
56	80
115	160
230	320

Table 2-6: Transformer Options

Transformer	Description
TV0.3-28-56-ST	Generate 28 or 56 VAC from 115 VAC or 230 VAC input source voltage. When rectified by the drive, it produces a 40 or 80 VDC power bus.
TM3	Power up to 4 drives, providing 300 watts of power
TM5	Power up to 4 drives providing 500 watts of power
TV0.3-28	Generate 28 VAC from 115 VAC or 230 VAC input source voltage. When rectified by the drive, it produces a 40 VDC power bus.
TV0.3-56	Generate 56 VAC from 115 VAC or 230 VAC input source voltage. When rectified by the drive, it produces an 80 VDC power bus.
TV1.5, TV2.5, or TV5	1.5 kVA, 2.5 kVA, or 5 kVA isolation transformer; 115/230 VAC input; 28, 43, 56, 70, 115 VAC output

Integral Fuse 3.15A Slow-Blow F1-IN Thermal MOTOR ◬ F1-OUT AC LO - 50/60 HZ INPUT Switch SUPPLY 115V Ø 100V 0 ◬ <u> 4</u> ΟV 115V Ø 100V 0 CONTROL SUPPLY Frame Ground <u></u> TV0.3-28-56-ST Wiring 115 VAC INPUT Secondary = 28 VAC (40 VDC Bus) Integral Fuse 3.15A Slow-Blow F1-IN Internal Thermal Switch AC HI 230 VAC MOTOR ◬ 50/60 HZ INPUT SUPPLY 115V 0 100V 0 ◬ <u> 4</u> οv 0 115V 0 100V 0 CONTROL SUPPLY Frame Ground ◬ TV0.3-28-56-ST Wiring 230 VAC INPUT Secondary = 28 VAC (40 VDC Bus) FOLLOW ALL APPLICABLE WIRING AND SAFETY CODES. CONNECT ALL WIRING BEFORE /

HAZARDOUS VOLTAGES PRESENT POWERING TRANSFORMER 1. For 100 VAC primary input, parallel the 100 VAC taps and leave the 115 VAC taps unterminated. 2. For 200 VAC primary input, series the 100 VAC taps and leave the 115 VAC taps unterminated. 3. When using an isolation transformer, earth grounding of the AC2 input tap reduces electrical and audible noise emissions and provides increased servo performance. 4. Transformer Primary Wiring: 0.8 mm² (#18 AWG) 300 V wire. 5. Transformer Secondary Wiring: 1.3 mm² (#16 AWG) 300 V wire. 6. AC line filters are for CE compliance. Filters may also be located on the primary side of the transformer. Drawing: 620B1346-8, Rev.

Figure 2-3: TV0.3-28-56-ST Transformer Control and Motor Power Wiring (40 VDC Bus)

Integral Fuse 3.15A Slow-Blow F1-IN Internal Thermal MOTOR ◬ F1-OUT • 50/60 HZ INPUT AC LO **SUPPLY** 115V 0 SAFETY 100V AC2 0 ◬ <u> 4</u> 0V 0 115V Ø 100V 0 CONTROL SUPPLY Frame Ground ◬ TV0.3-28-56-ST Wiring Secondary = 28+28 = 56 VAC (80 VDC Bus) 115 VAC INPUT Integral Fuse 3.15A Slow-Blow AC HI Internal 230 VAC MOTOR ◬ 50/60 HZ Switch 0 SUPPLY INPUT 28V • 0 SAFETY 100V 0 ◬ 0٧ 4 <u>/3</u> 0V 115V 0 100V Ø Ø CONTROL SUPPLY Frame Ground ◬ TV0.3-28-56-ST Wiring Secondary = 28+28 = 56 VAC (80 VDC Bus) 230 VAC INPUT FOLLOW ALL APPLICABLE WIRING CONNECT ALL WIRING BEFORE HAZARDOUS VOLTAGES PRESENT AND SAFETY CODES. POWERING TRANSFORMER 1. For 100 VAC primary input, parallel the 100 VAC taps and leave the 115 VAC taps unterminated. 2. For 200 VAC primary input, series the 100 VAC taps and leave the 115 VAC taps unterminated. 3. When using an isolation transformer, earth grounding of the AC2 input tap reduces electrical and audible noise emissions and provides increased servo performance. 4. Transformer Primary Wiring: 0.8 mm² (#18 AWG) 300 V wire. 5. Transformer Secondary Wiring: 1.3 mm² (#16 AWG) 300 V wire. 6. AC line filters are for CE compliance. Filters may also be located on the primary side of Drawing: 620B1346-9, Rev. the transformer.

Figure 2-4: TV0.3-28-56-ST Transformer Control and Motor Power Wiring (80 VDC Bus)

Primary Fuse 4A Slow-Blow AC HI 115 VAC Thermal MOTOR Switch #18 WHT - 50/60 HZ INPUT SUPPLY splice 56V RED 115V BLK AC1 ◬ 100V ORN AC2 ◬ 0V GRY splice 115V BRN 56V YEI 100V GRN 0V BLU splice 0V BLK rh CONTROL Frame Ground SUPPLY TV0.3-28-56-ST Wiring 115 VAC INPUT Secondary = 115 VAC (160 VDC Bus) Primary Fuse 4A Slow-Blow #18 WHT AC HI Δ 230 VAC Thermal MOTOR #18 WHT splice 50/60 HZ INPUT Switch SUPPLY 56V RED 115V BLK AC1 <u> 8</u> 100V ORN AC2 ◬ 0V GRY splice splice 115V BRN 56V YEL 100V GRN OV BLU OV BLK rh CONTROL SUPPLY TV0.3-28-56-ST Wiring 230 VAC INPUT Secondary = 115 VAC (160 VDC Bus) FOLLOW ALL APPLICABLE WIRING CONNECT ALL WIRING BEFORE /

HAZARDOUS VOLTAGES PRESENT **POWERING TRANSFORMER** AND SAFETY CODES 1. For 100 VAC primary input, parallel the 100 VAC taps and leave the 115 VAC taps unterminated. 2. For 200 VAC primary input, series the 100 VAC taps and leave the 115 VAC taps unterminated. 3. When using an isolation transformer, earth grounding of the AC2 input tap reduces electrical and audible noise emissions and provides increased servo performance. 4. Additional or alternative fusing may be required for optimum protection 5. AC line filters are for CE compliance. Filters may also be located on the primary side of the transformer. 6. Transformer Primary Wiring: 0.8 mm² (#18 AWG) 300 V wire. 7. Transformer Secondary Wiring: 1.3 mm² (#16 AWG) 300 V wire. Drawing: 620B1346-3

Figure 2-5: TV0.3-28-56-ST Transformer Control and Motor Power Wiring (160 VDC Bus)

Primary Fuse 4A Slow-Blow AC HI Δ Thermal **MOTOR** - 50/60 HZ INPUT Switch #18 WHT AC LO SUPPLY splice 28V RED 115V BLK 100V ORN AC2 ◬ ◬ ⅓ 0V GRY 115V BRN 28V YEI 100V GRN 0V BLU splice 0V BLK CONTROL m SUPPLY Frame Ground <u> </u> TV0.3-28 Wiring 115 VAC INPUT Secondary = 28 VAC (40 VDC Bus) Primary Fuse 4A Slow-Blow Internal 230 VAC MOTOR ◬ Thermal #18 WHT splice = 50/60 HZ INPUT ACTO SUPPLY 28V RED 115V BLK 100V ORN ◬ 0V GRY splice 115V BRN 28V YEI 100V GRN OV BLU OV BLK CONTROL ראי SUPPLY ⅓ TV0.3-28 Wiring 230 VAC INPUT Secondary = 28 VAC (40 VDC Bus) FOLLOW ALL APPLICABLE WIRING CONNECT ALL WIRING BEFORE /

HAZARDOUS VOLTAGES PRESENT POWERING TRANSFORMER AND SAFETY CODES 1. For 100 VAC primary input, parallel the 100 VAC taps and leave the 115 VAC taps unterminated. 2. For 200 VAC primary input, series the 100 VAC taps and leave the 115 VAC taps unterminated. 3. When using an isolation transformer, earth grounding of the AC2 input tap reduces electrical and audible noise emissions and provides increased servo performance. 4. Additional or alternative fusing may be required for optimum protection 5. AC line filters are required for CE compliance. Filters may also be located on the primary side of the transformer. 6. Transformer Primary Wiring: 0.8 mm² (#18 AWG) 300 V wire. 7. Transformer Secondary Wiring: 1.3 mm² (#16 AWG) 300 V wire. Drawing: 620B1346-1

Figure 2-6: TV0.3-28 Transformer Control and Motor Power Wiring (40 VDC Bus)

Primary Fuse 4A Slow-Blow AC HI Thermal MOTOR #18 WHT Switch AC LO - 50/60 HZ INPUT SUPPLY splice 56V RED 115V BLK 100V ORN AC2 ◬ 0V GRN ◬ 0V GRY 115V BRN 56V YEL 100V GRN 0V BLU splice 0V BLK rh, CONTROL SUPPLY Frame Ground A TV0.3-56 Wiring 115 VAC INPUT Secondary = 56 VAC (80 VDC Bus) Primary Fuse 4A Slow-Blow #18 WHT Internal AC HI 230 VAC MOTOR А Thermal #18 WHT splice 50/60 HZ INPUT Switch SUPPLY 56V RED 115V BLK 100V ORN <u> 8</u> 0V GRN ◬ 0V GRY splice 115V BRN 56V YEL 100V GRN 0V BLK 0V BLU CONTROL m SUPPLY ◬ TV0.3-56 Wiring 230 VAC INPUT Secondary = 56 VAC (80 VDC Bus) FOLLOW ALL APPLICABLE WIRING CONNECT ALL WIRING BEFORE HAZARDOUS VOLTAGES PRESENT AND SAFETY CODES POWERING TRANSFORMER 1. For 100 VAC primary input, parallel the 100 VAC taps and leave the 115 VAC taps unterminated. 2. For 200 VAC primary input, series the 100 VAC taps and leave the 115 VAC taps unterminated. 3. When using an isolation transformer, earth grounding of the AC2 input tap reduces electrical and audible noise emissions and provides increased servo performance. 4. Additional or alternative fusing may be required for optimum protection 5. AC line filters are required for CE compliance. Filters may also be located on the primary side of the transformer. 6. Transformer Primary Wiring: 0.8 mm² (#18 AWG) 300 V wire. Drawing: 620B1346-2 7. Transformer Secondary Wiring: 1.3 mm² (#16 AWG) 300 V wire.

Figure 2-7: TV0.3-56 Transformer Control and Motor Power Wiring (80 VDC Bus)

TM3/TM5 TRANSFORMER MODULE MOTOR SUPPLY MOTOR SUPPLY CONTROL CONTROL SUPPLY AC2 3rd Drive 1st Drive MOTOR SUPPLY MOTOR SUPPLY CONTROL SUPPLY CONTROL SUPPLY 2nd Drive 4th Drive TM3 SHOWN FOLLOW ALL APPLICABLE WIRING AND SAFETY CODES. CONNECT ALL WIRING BEFORE POWERING TRANSFORMER /

//

HAZARDOUS VOLTAGES PRESENT 1. See the TM3 or TM5 manual for input voltage configuration 2. Wiring Specifications: 1.3 mm^2 (#16 AWG) 300 V wire.

Figure 2-8: TM3/TM5 Transformer Control and Motor Power Wiring

3. Control Supply output voltage (115 VAC in this example) is always the same as the AC Input Voltage to the unit.

2.1.4. Minimizing Noise for EMC/CE Compliance

IMPORTANT: The iXC4e/XC4e is a component designed to be integrated with other electronics. EMC testing must be conducted on the final product configuration.

To reduce electrical noise, observe the following motor feedback and input power wiring techniques.

- 1. Use shielded cable for motor and feedback connectors. Connect the shield to the backshell at each end of the cable.
- 2. Separate motor and power wiring from encoder and I/O wiring.
- 3. Mount drives, power supplies, and filter components on a conductive panel. Mount line filters close to the drive to keep the wire length between the drive and filter to a minimum. Use a line filter, such as Aerotech's UFM-ST, on the Motor Supply and Control Supply AC inputs.
- 4. Use the lowest motor voltage required by the application to reduce radiated emission.
- 5. Use an isolation transformer with grounded secondary to keep the effects of high frequency PWM amplifier currents to a minimum.
- 6. Use a separate wire for each ground connection to the drive. Use the shortest possible wire length.

The following additional changes could be required for EMC compliance and are recommended during initial EMC system evaluation.

- 1. Add a clamp-on ferrite to the feedback cable close to the drive. [Aerotech PN ECZ02348, Fair-rite PN 0446167281]
- 2. Add a clamp-on ferrite to the Motor Supply and Control Supply wires, including the ground wire, close to the drive.

 [Aerotech PN ECZ02347, Fair-rite PN 0446164281]
- 3. Add a ferrite core to the UFM-ST AC input wires. Wrap the AC wires and ground wire around the core one time.

 [Ferrite core: Aerotech PN ECZ02350, Fair-rite PN 2646102002]
- 4. Add a ferrite core to the motor phase and ground wires close to the drive. Wrap all four wires around the ferrite core once. Remove ferrite beads from Aerotech supplied cables if installed. [Ferrite core: Aerotech PN ECZ02349, Fair-rite PN 2646626402]
- 5. Install a motor filter module MFM10-1 close to the drive. The ferrite core that you added to the motor phase and ground wires should be located between the drive and the MFM10-1.

2.2. Motor Power Output Connector

DANGER: Before you do maintenance to the equipment, disconnect the electrical power. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.

The drive can be used to drive the following motor types:

- Brushless (refer to Section 2.2.1.)
- DC Brush (refer to Section 2.2.2.)
- Stepper (refer to Section 2.2.3.)

For a complete list of electrical specifications, refer to Section 1.1.

IMPORTANT: Refer to local electrical safety requirements to correctly size external system wires.

The 7-pin terminal block style motor output connector is located on the front panel. The pinout for this connector is shown in Table 2-7.

 Table 2-7:
 Motor Power Output Connector Pinout

Pin	Description	Recommended Wire Size	Connector
	Earth Ground to Motor	1.3 mm ² (#16 AWG)	AC1 ⁸ 0
	Brushless Phase A Motor Lead		AC2
Α	DC Brush +	1.3 mm ² (#16 AWG)	Q P
	Stepper		1
В	Brushless Phase B Motor Lead	1.3 mm ² (#16 AWG)	
В	Stepper	1.5 11111 (#107444)	MOTOR A
	Brushless Phase C Motor Lead		
C	DC Brush -	1.3 mm ² (#16 AWG)	В
	Stepper Return		C

Table 2-8: Mating Connector Part Numbers for the Motor Power Output Connector

Туре	Aerotech	Third Part	Screw	Wire Size:
	P/N	P/N	Torque: Nm	mm²[AWG]
7-Pin Terminal Block	ECK02387	Phoenix 1756353	0.5 - 0.6	3.3 - 0.0516 [12-30]

2.2.1. Brushless Motor Connections

The configuration in Figure 2-9 shows a typical brushless motor connection.

Figure 2-9: Brushless Motor Configuration

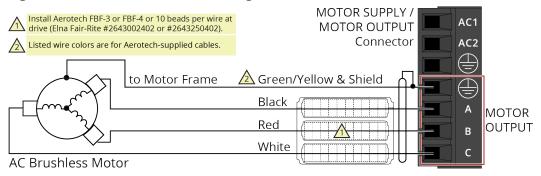


Table 2-9: Wire Colors for Aerotech-Supplied Brushless Motor Cables

1.1						
Pin	Wire Color Set 1 ⁽¹⁾	Wire Color Set 2	Wire Color Set 3	Wire Color Set 4		
	Green/Yellow &	Green/Yellow &	Green/Yellow &	Green/Yellow &		
	Shield ⁽²⁾	Shield	Shield	Shield		
Α	Black	Blue & Yellow	Black #1	Black & Brown		
В	B Red Red & Orange Black #2 Red & Orange			Red & Orange		
С	C White White & Brown Black #3 Violet & Blue					
(1) Wire Color Set #1 is the wire set typically used by Aerotech.						
(2) "&" indicates two wires (Red & Orange); " / " indicates a single wire (Green/White).						

Brushless motors are commutated electronically by the controller. The use of Hall effect devices for commutation is recommended.

The controller requires that the Back-EMF of each motor phase be aligned with the corresponding Hall-effect signal. To ensure proper alignment, motor, Hall, and encoder connections should be verified using one of the following methods: *powered*, through the use of a test program; or *unpowered* using an oscilloscope. Both methods will identify the A, B, and C Hall/motor lead sets and indicate the correct connections to the controller. Refer to Section 2.2.1.1. for powered motor phasing or Section 2.2.1.2. for unpowered motor and feedback phasing.

For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.

A motor filter module can be installed between the drive and the motor to reduce the effects on PWM generated noise currents.

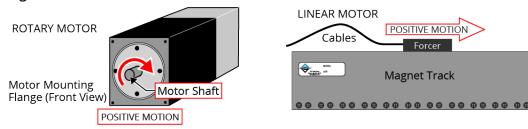
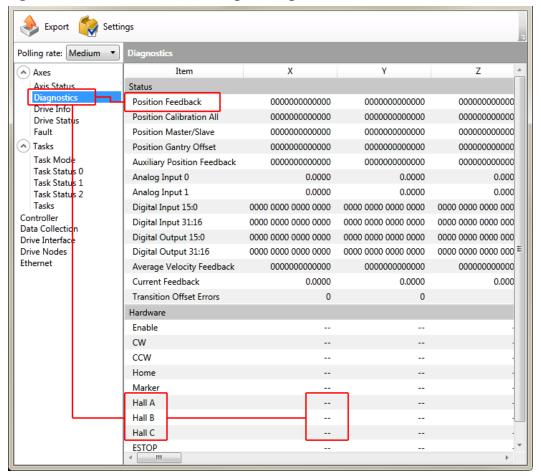
2.2.1.1. Brushless Motor Powered Motor and Feedback Phasing

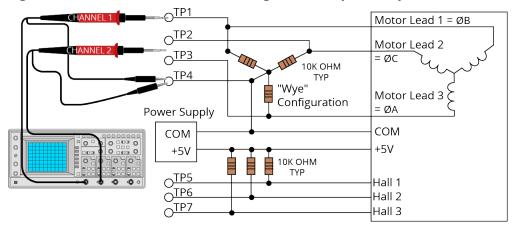
Observe the state of the encoder and Hall-effect device signals in the Diagnostics section of the Status Utility.

Table 2-10: Hall Signal Diagnostics

Hall-Signal Status	Definition
	0 V or logic low
ON	5 V or logic high

Figure 2-10: Positive Motor Direction


Figure 2-11: Encoder and Hall Signal Diagnostics

2.2.1.2. Brushless Motor Unpowered Motor and Feedback Phasing

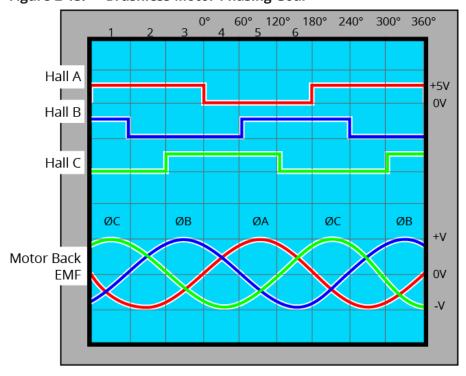

Disconnect the motor from the controller and connect the motor in the test configuration shown in Figure 2-12. This method will require a two-channel oscilloscope, a 5V power supply, and six resistors (10,000 ohm, 1/4 watt). All measurements should be made with the probe common of each channel of the oscilloscope connected to a neutral reference test point (TP4, shown in Figure 2-12). Wave forms are shown while moving the motor in the positive direction.

Figure 2-12: Brushless Motor Phasing Oscilloscope Example

With the designations of the motor and Hall leads of a third party motor determined, the motor can now be connected to an Aerotech system. Connect motor lead A to motor connector A, motor lead B to motor connector B, and motor lead C to motor connector C. Hall leads should also be connected to their respective feedback connector pins (Hall A lead to the Hall A feedback pin, Hall B to Hall B, and Hall C to Hall C). The motor is correctly phased when the Hall states align with the Back EMF as shown in Figure 2-13. Use the CommutationOffset parameter to correct for Hall signal misalignment.

Figure 2-13: Brushless Motor Phasing Goal

2.2.2. DC Brush Motor Connections

The configuration shown in Figure 2-14 is an example of a typical DC brush motor connection. Refer to Section 2.2.2.1. for information on motor phasing.

Figure 2-14: DC Brush Motor Configuration

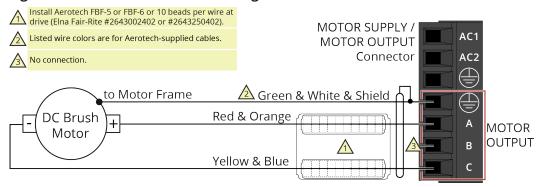


Table 2-11: Wire Colors for Aerotech-Supplied DC Brush Motor Cables


Pin	Wire Color Set 1 ⁽¹⁾	Wire Color Set 2	Wire Color Set 3		
	Green & White & Shield (2)	Green/Yellow & Shield	Green/Yellow & Shield		
Α	Red & Orange	Red	Red & Orange		
C Yellow & Blue Black Yellow & Blue					
(1) Wire Color Set #1 is the typical wire set used by Aerotech.					

2.2.2.1. DC Brush Motor Phasing

A properly phased motor means that the positive motor lead should be connected to the ØA motor terminal and the negative motor lead should be connected to the ØC motor terminal. To determine if the motor is properly phased, connect a voltmeter to the motor leads of an un-powered motor:

- 1. Connect the positive lead of the voltmeter to the one of the motor terminals.
- 2. Connect the negative lead of the voltmeter to the other motor terminal.
- 3. Move or rotate the motor in the positive or clockwise (CW) direction by hand.

Figure 2-15: Positive Motor Direction

- 4. If the voltmeter indicates a negative value, swap the motor leads and move the motor by hand in the positive direction, again. When the voltmeter indicates a positive value, the motor leads have been identified.
- 5. Connect the motor lead from the positive lead of the voltmeter to the ØA motor terminal on the drive. Connect the motor lead from the negative lead of the voltmeter to the ØC motor terminal on the drive.

For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.

2.2.3. Stepper Motor Connections

The configuration shown in Figure 2-16 is an example of a typical stepper motor connection. Refer to Section 2.2.3.1. for information on motor phasing.

In this case, the effective motor voltage is half of the applied bus voltage. For example, an 80 V motor bus supply is needed to get 40 V across the motor.

Figure 2-16: Stepper Motor Configuration

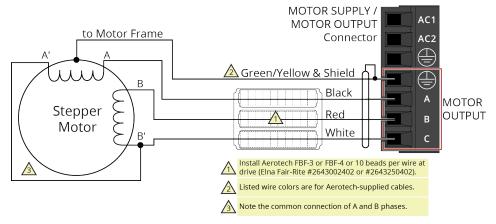
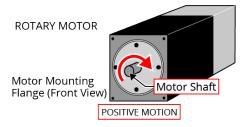


Table 2-12: Wire Colors for Aerotech-Supplied Stepper Motor Cables

Pin	Wire Color Set 1 ⁽¹⁾	Wire Color Set 2			
	Green/Yellow & Shield ⁽²⁾	Green/Yellow & Shield			
А	Black	Brown			
В	Red	Yellow			
С	C White White & Red				
(1) Wire Color Set #1 is the typical wire set used by Aerotech.					
(2) "&" (Red & Orange) indicates two wires; " / " (Green/White) indicates a single wire.					

2.2.3.1. Stepper Motor Phasing


A stepper motor can be run with or without an encoder.

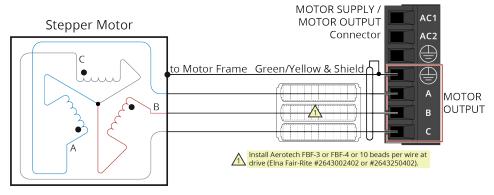
Without an Encoder: You do not need to phase the motor.

With an Encoder: Because the end of travel (EOT) limit inputs are relative to motor rotation, it is important to phase the motor.

Run a positive motion command. The motor is phased correctly if there is a positive scaling factor (determined by the ServoLoopSetup parameter) and the motor moves in a clockwise direction when you view the motor from the front mounting flange (Figure 2-17). If the motor moves in a counterclockwise direction, reverse the motor leads and re-run the command. After the motor has been phased, if you want to change the direction of positive motion, use the ReverseMotionDirection parameter.

Figure 2-17: Positive Motor Direction

For Aerotech-supplied systems, the motor, encoder and Hall sensors are correctly configured and connection adjustments are not necessary.

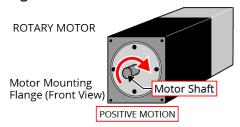

2.2.4. Three Phase Stepper Motor Connections

IMPORTANT: This feature is only supported in Automation1 software version 2.2.0. or later.

The configuration shown in Figure 2-18 is an example of a typical three phase stepper motor connection. Refer to Section 2.2.4.1. for information on motor phasing.

Figure 2-18: Three Phase Stepper Motor Configuration

2.2.4.1. Stepper Motor Phasing


A three phase stepper motor can be run with or without an encoder.

Without an Encoder: You do not need to phase the motor.

With an Encoder: Because the end of travel (EOT) limit inputs are relative to motor rotation, it is important to phase the motor.

Run a positive motion command. The motor is phased correctly if there is a positive scaling factor (determined by the ServoLoopSetup parameter) and the motor moves in a clockwise direction when you view the motor from the front mounting flange (Figure 2-19). If the motor moves in a counterclockwise direction, reverse the motor leads and re-run the command. After the motor has been phased, if you want to change the direction of positive motion, use the ReverseMotionDirection parameter.

Figure 2-19: Positive Motor Direction

2.3. Feedback Connector

The connector pin assignment is shown in Table 2-13 with detailed connection information in the following sections.

Table 2-13: Feedback Connector Pinout

Pin #	Description	In/Out/Bi	Connector
1	Reserved	N/A	
2	Motor Over Temperature Thermistor	Input	
3	+5V Power ⁽¹⁾	Output	
4	Plug and Play Serial Data (for Aerotech stages only)	Bidirectional	
5	Hall-Effect Sensor B (brushless motors only)	Input	
6	Encoder Marker Reference Pulse -	Input	
0	Absolute Encoder Clock -	Output	
7	Encoder Marker Reference Pulse +	Input	
/	Absolute Encoder Clock +	Output	14
8	Absolute Encoder Data -	Bidirectional	
9	Reserved	N/A	
10	Hall-Effect Sensor A (brushless motors only)	Input	
11	Hall-Effect Sensor C (brushless motors only)	Input	
12	Clockwise End of Travel Limit	Input	
13	Brake Output -	Output	
14	Encoder Cosine +	Input	
15	Encoder Cosine -	Input	
16	+5V Power ⁽¹⁾	Output	
17	Encoder Sine +	Input	13 25
18	Encoder Sine -	Input	13 -
19	Absolute Encoder Data+	Bidirectional	
20	Signal Common	Output	
21	Signal Common	Output	
22	Home Switch Input	Input	
23	Encoder Fault Input	Input	
24	Counterclockwise End of Travel Limit	Input	
25	Brake Output +	Output	
(1) The r	naximum combined current output is 500 mA.		

Table 2-14: Mating Connector Part Numbers for the Feedback Connector

Mating Connector	Aerotech P/N	Third Party P/N
25-Pin D-Connector	ECK00101	FCI DB25P064TXLF
Backshell	ECK00656	Amphenol 17E-1726-2

2.3.1. Primary Encoder Inputs

The primary encoder inputs are accessible through the Feedback connector. Use the PrimaryFeedbackType [A3200: PositionFeedbackType or VelocityFeedbackType] parameter to configure the drive to accept an encoder signal type.

Square Wave encoder signals: Section 2.3.1.1.

Absolute encoder signals: Section 2.3.1.2.

Sine Wave encoder signals (as permitted by the multiplier option): Section 2.3.1.3.

Refer to Section 2.3.1.4. for encoder feedback phasing.

Refer to Section 2.5. for the auxiliary encoder input on the Aux I/O connector.

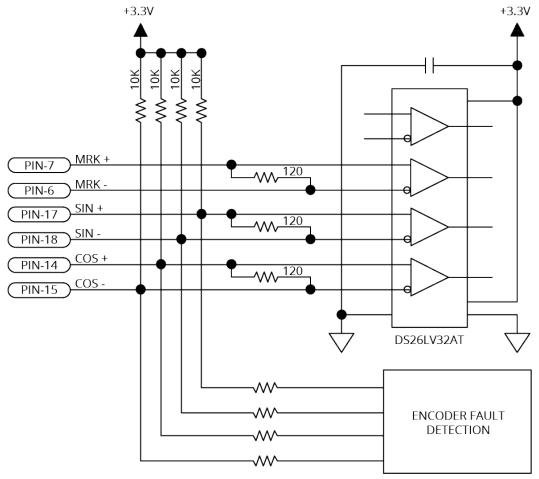
Table 2-15: Multiplier Options

Option	Primary Encoder Accepts	Auxiliary Encoder Accepts
-MX0	Square Wave or Absolute encoders	Square Wave or Absolute encoders
-MX2	Sine Wave (high performance), Square Wave, or Absolute encoders	Square Wave or Absolute encoders
-MX3	Sine Wave (high performance), Square Wave, or Absolute encoders	Sine Wave (standard performance), Square Wave, or Absolute encoders

IMPORTANT: Physically isolate the encoder wiring from motor, AC power, and all other power wiring

Table 2-16: Primary Encoder Input Pins on the Feedback Connector

Pin #	Description	In/Out/Bi
3	+5V Power ⁽¹⁾	Output
6	Encoder Marker Reference Pulse -	Input
O	Absolute Encoder Clock -	Output
7	Encoder Marker Reference Pulse +	Input
,	Absolute Encoder Clock +	Output
8	Absolute Encoder Data -	Bidirectional
14	Encoder Cosine +	Input
15	Encoder Cosine -	Input
16	+5V Power ⁽¹⁾	Output
17	Encoder Sine +	Input
18	Encoder Sine -	Input
19	Absolute Encoder Data+	Bidirectional
20	Signal Common	Output
21	Signal Common	Output
(1) The r	naximum combined current output is 500 mA.	

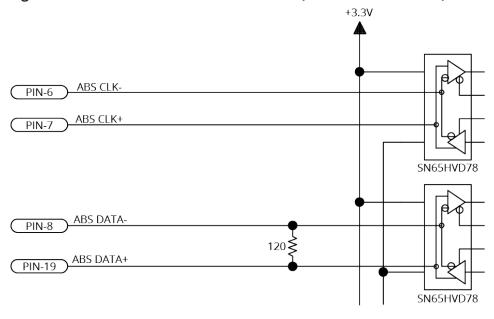

2.3.1.1. Square Wave Encoder (Primary)

The drive accepts RS-422 square wave encoder signals. The drive will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-17: Square Wave Encoder Specifications

Specification	Value	
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)	
x4 Quadrature Decoding	40 million counts/sec	

Figure 2-20: Square Wave Encoder Schematic (Feedback Connector)


2.3.1.2. Absolute Encoder (Primary)

The drive retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot echo an absolute encoder signal.

Refer to Figure 2-21 for the serial data stream interface.

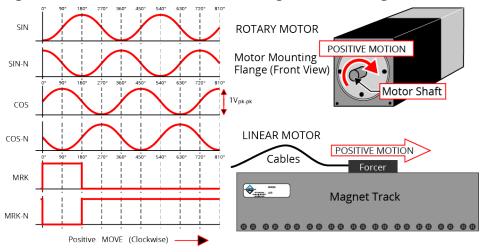
Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

Figure 2-21: Absolute Encoder Schematic (Feedback Connector)

2.3.1.3. Sine Wave Encoder (Primary) [-MX2/-MX3 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the PrimaryEncoderMultiplicationFactor [A3200: EncoderMultiplicationFactor] parameter. Use Encoder Tuning [A3200: Feedback Tuning] to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.

High resolution or high-speed encoders can require increased bandwidth for correct operation. Use the High Speed Mode of the PrimaryEncoderMultiplierSetup [A3200: EncoderMultiplierSetup] parameter to enable the high bandwidth mode. Because this mode increases sensitivity to system noise, use it only if necessary.

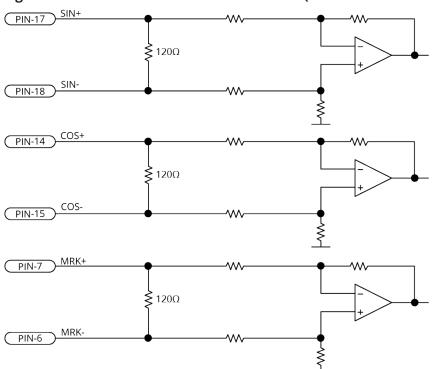

The drive can generate emulated encoder signals. These signals can be output on the Auxiliary Encoder (AUX) connector, SYNC port connector, or used internally by the PSO. Refer to the EncoderDivider and PrimaryEmulatedQuadratureDivider [A3200: EmulatedQuadratureDivider] parameters and the encoder output functions [A3200: ENCODER OUT command] in the Help file for more information.

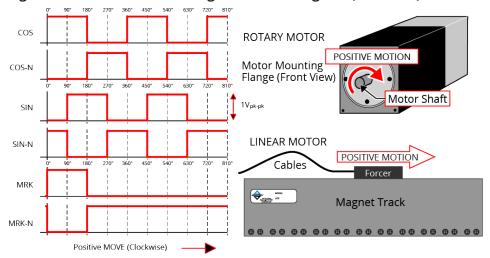
For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

Table 2-18: Sine Wave Encoder Specifications

Specification		Value		
		Primary	Auxiliary	
Input Frequency (max)		450 kHz, 2 MHz	450 kHz	
Input Amplitude (1)		0.6 to 1.75 Vpk-pk		
Internalation Factor (many)	-MX2	65,536	N/A	
Interpolation Factor (max)	-MX3	65,536	16,384	
-MX2/-MX3 Primary Encoder Channel Interpolation Latency		800 nsec (analog input to quadrature output)		
Input Common Mode		1.5 to 3.5 VDC		
(1) Measured as SIN(+) - SIN(-) or COS(+) - COS(-)				

Figure 2-22: Sine Wave Encoder Phasing Reference Diagram

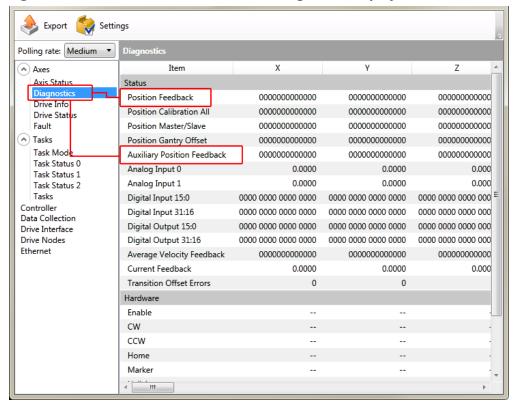



Figure 2-23: Sine Wave Encoder Schematic (Feedback Connector)

2.3.1.4. Encoder Phasing

Incorrect encoder polarity will cause the system to fault when enabled or when a move command is issued. Figure 2-24 illustrates the proper encoder phasing for clockwise motor rotation (or positive forcer movement for linear motors). To verify, move the motor by hand in the CW (positive) direction while observing the position of the encoder in the diagnostics display (see Figure 2-25).

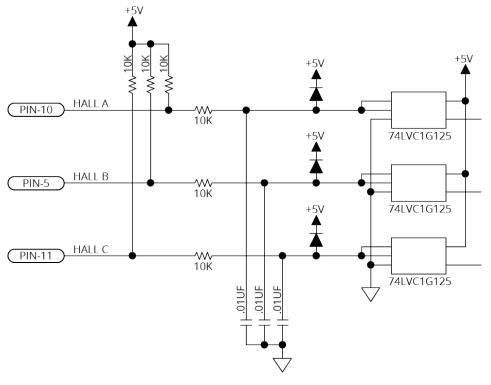
For dual loop systems, the velocity feedback encoder is displayed in the diagnostic display (Figure 2-25).


Figure 2-24: Encoder Phasing Reference Diagram (Standard)

IMPORTANT: Encoder manufacturers may refer to the encoder signals as A, B, and Z. The proper phase relationship between signals is shown in Figure 2-24.

Figure 2-25: Position Feedback in the Diagnostic Display

2.3.2. Hall-Effect Inputs


The Hall-effect switch inputs are recommended for AC brushless motor commutation but not absolutely required. The Hall-effect inputs accept 5 VDC level signals. Hall states (0,0,0) or (1,1,1) are invalid and will generate a "Hall Fault" axis fault.

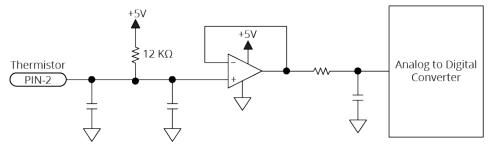
Refer to Section 2.2.1.1. for Hall-effect device phasing.

Table 2-19: Hall-Effect Feedback Pins on the Feedback Connector

Pin #	Description	In/Out/Bi	
3	+5V Power ⁽¹⁾	Output	
5	Hall-Effect Sensor B (brushless motors only)	Input	
10	Hall-Effect Sensor A (brushless motors only)	Input	
11	Hall-Effect Sensor C (brushless motors only)	Input	
16	+5V Power ⁽¹⁾	Output	
20	Signal Common	Output	
21	Signal Common	Output	
(1) The r	(1) The maximum combined current output is 500 mA.		

Figure 2-26: Hall-Effect Inputs Schematic (Feedback Connector)

2.3.3. Thermistor Input

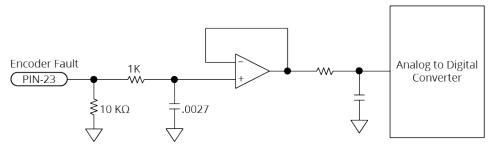

The thermistor input is used to detect a motor over temperature condition by using a positive temperature coefficient sensor. As the temperature of the sensor increases, so does the resistance. Under normal operating conditions, the resistance of the thermistor is low which will result in a low input signal. As the increasing temperature causes the resistance of the thermistor to increase, the sensor will trigger an over temperature fault.

The thermistor is connected between Pin 2 and Signal Common. The nominal trip value of the sensor is 1.385 k Ω . The circuit includes a 12 k Ω internal pull-up resistor which corresponds to a trip voltage of +0.52 V.

Table 2-20: Thermistor Input Pin on the Feedback Connector

Pin #	Description	In/Out/Bi
2	Motor Over Temperature Thermistor	Input

Figure 2-27: Thermistor Input Schematic (Feedback Connector)


2.3.4. Encoder Fault Input

The encoder fault input is for use with encoders that have a fault output. This is provided by some manufacturers and indicates a loss of encoder function. The active state of this input is parameter configurable and the controller should be configured to disable the axis when the fault level is active. The nominal trip voltage of the encoder fault input is +2.5 V.

Table 2-21: Encoder Fault Input Pin on the Feedback Connector

Pin #	Description	In/Out/Bi
23	Encoder Fault Input	Input

Figure 2-28: Encoder Fault Input Schematic (Feedback Connector)

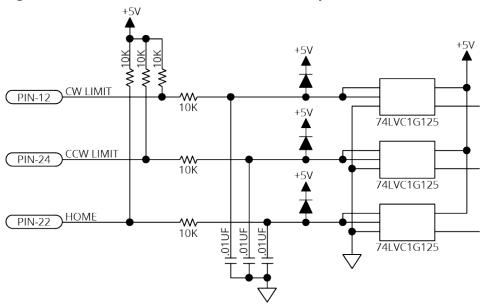
2.3.5. End of Travel and Home Limit Inputs

End of Travel (EOT) limits are required to define the end of the physical travel on linear axes. Positive or clockwise motion is stopped by the clockwise (CW) end of travel limit input. Negative or counterclockwise motion is stopped by the counterclockwise (CCW) end of travel limit input. The Home Limit switch can be parameter configured for use during the home cycle, however, the CW or CCW EOT limit is typically used instead. All of the end-of-travel limit inputs accept 0-24 VDC level signals. Limit directions are relative to the encoder polarity in the diagnostics display (refer to Figure 2-31).

Table 2-22: End of Travel and Home Limit Pins on the Feedback Connector

Pin #	Description In/Out/Bi	
12	Clockwise End of Travel Limit	Input
16	+5V Power	Output
20	Signal Common	Output
21	Signal Common	Output
22	Home Switch Input	Input
24	Counterclockwise End of Travel Limit	Input

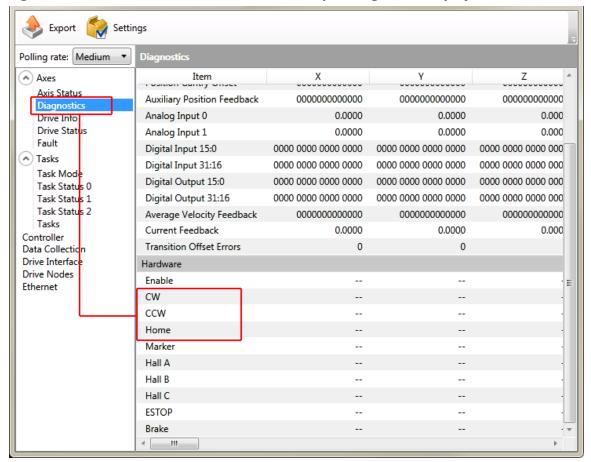
The active state (High/Low) of the EOT limits is software selectable (by the EndOfTravelLimitSetup axis parameter). Figure 2-29 shows the possible wiring configurations for normally-open and normally-closed switches and the parameter setting to use for each configuration.



IMPORTANT: Use NPN-type normally-closed limit switches (Active High) to provide fail-safe behavior in the event of an open circuit.

ACTIVE HIGH ACTIVE LOW Typical (Normally Closed and Active High) +5V PIN-16 +5V PIN-16 **≥**10K **≥**10K CW LMT PIN-12 CW LMT **NORMALLY CLOSED ≥**10K **≶**10K \$10K ₹_{1K} HM LMT PIN-22 HM LMT ≶1K LMT COM PIN-20 LMT COM **NPN Switches PNP Switches** +5V PIN-16 +5V PIN-16 \$10K **≶**10K CW LMT CW LMT PIN-12 **NORMALLY OPEN** PIN-12 \$10K 10K \$10K ₹10k **≶**1K LMT COM PIN-20 **PNP Switches NPN Switches**

Figure 2-29: End of Travel and Home Limit Input Connections



2.3.5.1. End of Travel and Home Limit Phasing

If the EOT limits are reversed, you will be able to move further into a limit but be unable to move out. To correct this, swap the connections to the CW and CCW inputs at the Feedback connector or swap the CW and CCW limit functionality in the software using the EndOfTravelLimitSetup parameter. View the logic level of the EOT limit inputs in the Diagnostics display (shown in Figure 2-31).

Figure 2-31: End of Travel and Home Limit Input Diagnostic Display

2.3.6. Brake Outputs

The drive has a dedicated brake control circuit. Configure the brake with the BrakeSetup [A3200: EnableBrakeControl] parameter for automatic control (typical). You can also use software commands to directly control the brake output.

Refer to Section 2.6. for more information on powering the brake circuit.

Table 2-23: Brake Output Pins on the Feedback Connector

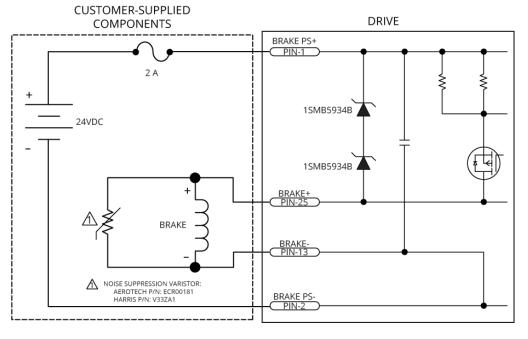

Pin #	Description	In/Out/Bi
13	Brake Output -	Output
25	Brake Output +	Output

Table 2-24: Brake Control Specifications

Specification	Value
Maximum Voltage	24 VDC
Maximum Current	1 A

A varistor must be connected across the brake to minimize voltage transients.

Figure 2-32: Brake Connected to the 25-Pin Feedback Connector (Typical)

2.4. Safe Torque Off Input (STO)

IMPORTANT: iXC4e certification is pending.

The STO circuit is comprised of two identical channels, each of which must be energized in order for the drive to produce motion. Each STO input is opto-isolated and accepts 24 V levels directly without the need for external current limiting resistors.

IMPORTANT: The drive might be equipped with an STO bypass circuit board. The bypass circuit board defeats the STO safety circuit and allows the system to run at all times. To use the STO safety functionality, remove the circuit board and make connections as outlined in this section.

IMPORTANT: The application circuit and its suitability for the desired safety level is the sole responsibility of the user of the drive.

WARNING: STO wires must be insulated to prevent short circuits between connector pins. The primary concern is a short circuit between STO 1 IN and STO 2 IN wire strands.

Table 2-25: STO Connector Pinout

Pin #	Signal	Description	In/Out/Bi	Connector
1	Power Supply +	Use only to defeat STO by connecting to STO 1 IN and STO 2 IN. Not for customer use.	Output	
2	STO 1 IN	STO Channel 1 Positive Input	Input	+V
3	RETURN	STO Negative Input	Input	STO 1 IN RETURN
4	STO 2 IN	STO Channel 2 Positive Input	Input	STO 2 IN
5	Power Supply -	Use only to defeat STO by connecting to RETURN. Not for customer use.	Output	

Table 2-26: Mating Connector Part Numbers for the STO Connector

Description	Aerotech P/N	Phoenix P/N	Tightening Torque (Nm)	Wire Size: AWG [mm²]
5-Pin Terminal Block	ECK02393	1827622	0.22 - 0.25	2.5 - 0.05 [14-30]

Table 2-27: STO Electrical Specifications

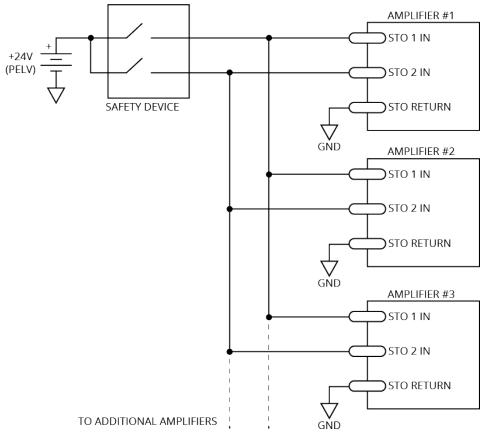

Status	Value
STO off (motion allowed)	18-24 V, 7 ma
STO on (safe state entered, no motion)	0-6 V
Recommended Wire Gauge	22-26 AWG (0.5 - 0.14 mm ²)
STO System Power Supply	PELV
STO Wire Length (maximum)	50 m

Figure 2-33 shows one safety device connected to multiple drives in parallel.

WARNING: The drive does not check for short circuits on the external STO wiring. If this is not done by the external safety device, short circuits on the wiring must be excluded. Refer to EN ISO 13849-2. For Category 4 systems, the exclusion of short circuits is mandatory.

Figure 2-33: Typical STO Configuration

2.4.1. STO Standards

Table 2-28 describes and specifies the safety requirements at the system level for the Safe Torque Off (STO) feature of the drive. This assumes that diagnostic testing is performed according to Section 2.4.4. and Table 2-29.

Table 2-28: STO Standards

Standard	Maximum Achievable Safety
EN/IEC 61800-5- 2:2016	SIL 3
EN/IEC 61508-1:2010	SIL 3
EN/IEC 61508-2:2010	SIL 3
EN ISO 13849-1:2015	Category 4, PL e
EN/IEC 62061:2005 with Amendments	SIL 3

Table 2-29: STO Standards Data

Standard	Value
	MTTF _D > 1000 years,
EN ISO 13849-1:2015	DC _{AVG} 99%
	Maximum PL e, Category 4
	Lifetime = 20 years
EN 150 400 40 4 004 5	No proof test required
EN ISO 13849-1:2015	Interval for manual STO test:
EN/IEC 61508	 Once per year for SIL2/PL d/category 3 Once per three months for SIL3/PL e/category 3
	 Once per three months for SIL3/PL e/category 3 Once per day for SIL3/PL e/category 4
	SIL3
EN/IEC 61508	PFH < 3 FIT
	SFF > 99%

2.4.2. STO Functional Description

The motor can only be activated when voltage is applied to both STO 1 and STO 2 inputs. The STO state will be entered if power is removed from either the STO 1 or the STO 2 inputs. When the STO state is entered, the motor cannot generate torque or force and is therefore considered safe.

The STO function is implemented with two redundant channels in order to meet stated performance and SIL levels. STO 1 disconnects the high side power amplifier transistors and STO 2 disconnects the low side power amplifier transistors. Disconnecting either set of transistors effectively prevents the drive from being able to produce motion.

The drive software monitors each STO channel and will generate an Emergency Stop software fault when either channel signals the stop state. Each STO channel contains a fixed delay which allows the drive to perform a controlled stop before the power amplifier transistors are turned off.

A typical configuration requiring a controlled stop has the Emergency Stop Fault mask bit set in the FaultMask, FaultMaskDecel, and FaultMaskDisable parameters. This stops the axis using the rate specified by the AbortDecelRate parameter. The software will disable the axis as soon as the deceleration ramp is complete. This is typically configured to occur before the STO channel turns off the power amplifier transistors.

The software controlled stop functionality must be excluded when considering overall system safety. This is because the software is not safety rated and cannot be included as part of the safety function.

The drive will tolerate short diagnostic pulses on the STO 1+ and STO 2+ inputs. The parameter "STOPulseFilter" specifies the maximum pulse width that the drive will ignore.

To resume normal operation, apply power to both STO 1 and STO 2 inputs and use the *Acknowledge All* button or the AcknowledgeAll() or FaultAcknowledge() function to clear the Emergency Stop software fault. The recommended use of the Emergency Stop Fault fault mask bits prevent the system from automatically restarting.

You can achieve longer delay times through the use of an external delay timer, such as the Omron G9SA-321 Safety Relay Unit. Place this device between the system ESTOP wiring and the drive's STO inputs. Connect the ESTOP signal directly to a digital input, in addition to the external timer, to allow the drive to begin a software-controlled stop as soon as the ESTOP signal becomes active. Use the EmergencyStopFaultInput [A3200: ESTOPFaultInput] parameter to configure a digital input as an ESTOP input.

Non-standard STO delay times are provided by special factory order. In this case, the non-standard STO delay time is indicated by a label placed on the slice amplifier's main connector (STO DELAY = xx sec).

Table 2-30: STO Signal Delay

	Value
STO Time Delay	450-550 msec

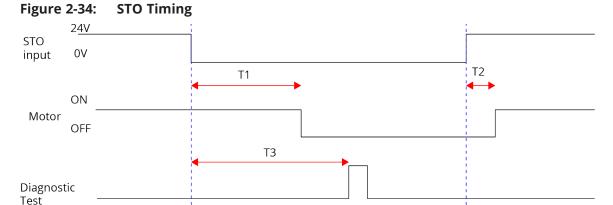
Table 2-31: Motor Function Relative to STO Input State

STO 1	STO 2	Motor Function		
Unpowered	Unpowered	No force/torque		
Unpowered (1)	Powered ⁽¹⁾	No force/torque		
Powered (1)	Unpowered (1) No force/torque			
Powered Powered Normal Operation				
1. This is considered a Fault Condition since STO 1 and STO 2 do not match. Refer to Section 2.4.4.				

2.4.3. STO Startup Validation Testing

Verify the state of the STO 1 and STO 2 channels by manually activating the external STO hardware. Each STO channel must be tested separately in order to detect potential short circuits between the channels. The current state of the STO 1 and STO 2 inputs is shown in the Status Utility. A "–" indicates that the STO input is powered by a high voltage level (24 V). An "ON" indicates that the voltage source has been removed from the input (open circuit or 0 V), and that the STO channel is in the safe state.

DANGER: The STO circuit does not remove lethal voltage from the motor terminals. AC mains power must be removed before servicing.


2.4.4. STO Diagnostics

Activation of STO means removing power from the drive's STO inputs. This is typically done by pressing the emergency stop switch. The drive initiates a diagnostic check every time the STO is activated after the Diagnostic Test Delay Time has elapsed. The diagnostic check verifies that each channel has entered the safe state. The drive is held in the safe state if it determines that one of the channels has not properly entered the safe state. An open circuit or short to 24 V in either STO channel will result in this condition (refer to Section 2.4.3.). The Status Utility screen can be used to verify the levels of the STO input signals while trouble shooting.

In order to meet the listed SIL level, the STO circuit must be activated (power removed from both inputs) according to the interval specified in Table 2-29.

Table 2-32: STO Timing

Time	Description	Value
T1	STO Delay Time (STO input active to motor power off)	450-550 msec
T2	STO deactivated to motor power on (the software is typically configured so that the motor does not automatically reenergize).	< 1 msec
T3	Diagnostic Test Delay Time	550-610 msec

The software is typically configured to execute a controlled stop when the STO state is first detected. If power is reapplied to the STO inputs before the STO Delay Time, an STO hardware shutdown will not occur but a software stop may, depending on the width of the STO pulse. The controller will ignore STO active pulses shorter in length than the STOPulseFilter parameter setting.

2.5. Auxiliary I/O Connector

The Auxiliary I/O connector has 1 analog input, 6 digital inputs, 1 analog output, 4 digital outputs, a secondary line driver encoder input, and a secondary absolute encoder interface.

Table 2-33: **Auxiliary I/O Connector Pinout**

Pin#	Description	In/Out/Bi	Connector
1	Auxiliary Sine +	Bidirectional	
'	Absolute Encoder Data +	Bidirectional	
2	Auxiliary Sine -	Bidirectional	
	Absolute Encoder Data -	Bidirectional	
3	High-Speed Input 20 + / PSO External Sync. +	Input	
4	High-Speed Input 20 - / PSO External Sync	Input	
5	High-Speed Input 21 +	Input	
6	High-Speed Input 21 -	Input	
7	Digital Output 0	Output	
8	Digital Output 1	Output	
9	Digital Output 2	Output	
10	Auxiliary Cosine +	Bidirectional	
10	Absolute Encoder Clock +	Output	(80 (80 (80)
11	Auxiliary Cosine-	Bidirectional	
	Absolute Encoder Clock -	Output	
12	+5 Volt (500 mA max)	Output	
13	Analog Input 0+ (Differential)	Input	
14	Analog Input 0- (Differential)	Input	
15	Digital Output Common	Output	
16	Digital Output 3	Output	
17	Digital Input 0 / CCW EOT Input (1)	Input	
18	Digital Input 1 / CW EOT Input (1)	Input	
19	Auxiliary Marker- / PSO output (2) / TTL Output	Bidirectional	
20	Auxiliary Marker+ / PSO output (2)	Bidirectional	
21	Common	Output	
22	Analog Output 0	Output	
23	Analog Common	Output	
24	Digital Input Common	Output	
25	Digital Input 2 / Home Input (1)	Input	
26	Digital Input 3	Input	<u> </u>
	vare configured option		
(2) For P	SO, refer to Section 2.5.2.		

Table 2-34: Mating Connector Part Numbers for the Auxiliary I/O Connector

Mating Connector	Aerotech P/N	Third Party P/N			
Connector	ECK01259	Kycon K86-AA-26P			
Backshell ECK01022		Amphenol 17-1725-2			
NOTE: These items are provided as a set under the Aerotech P/N: MCK-26HDD.					

2.5.1. Auxiliary Encoder Inputs

The Auxiliary Encoder connector gives you a second encoder input channel. This channel is typically used for dual loop applications.

Use the AuxiliaryFeedbackType [A3200: PositionFeedbackType or VelocityFeedbackType] parameter to configure the drive to accept an encoder signal type.

Square Wave encoder signals: Section 2.5.1.1.

Absolute encoder signals: Section 2.5.1.2.

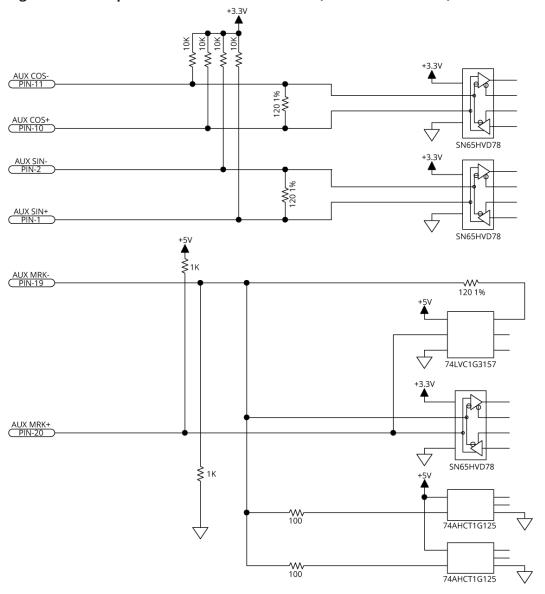
Sine Wave encoder signals (with the -MX3 option): Section 2.5.1.3.

You can configure the Auxiliary Encoder interface as an output that will transmit encoder signals for external use. Use the DriveEncoderOutputConfigureInput() function [A3200: EncoderDivider parameter] to configure the Sine ± and Cosine ± connector pins as RS-422 outputs. You can only echo incremental square wave primary encoder inputs or, with the -MX2 or -MX3 option, incremental sine wave primary encoder inputs. You cannot use the absolute encoder interface when you echo incremental signals.

Table 2-35: Auxiliary Encoder Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi		
1	Auxiliary Sine +	Bidirectional		
Į.	Absolute Encoder Data +	Bidirectional		
2	Auxiliary Sine -	Bidirectional		
	Absolute Encoder Data -	Bidirectional		
10	Auxiliary Cosine +	Bidirectional		
10	Absolute Encoder Clock +	Output		
11	Auxiliary Cosine-	Bidirectional		
11	Absolute Encoder Clock -	Output		
12	+5 Volt (500 mA max)	Output		
19	Auxiliary Marker- / PSO output (2) / TTL Output	Bidirectional		
20	Auxiliary Marker+ / PSO output (2)	Bidirectional		
21	Common	Output		
(2) For PS	(2) For PSO, refer to Section 2.5.2.			

66

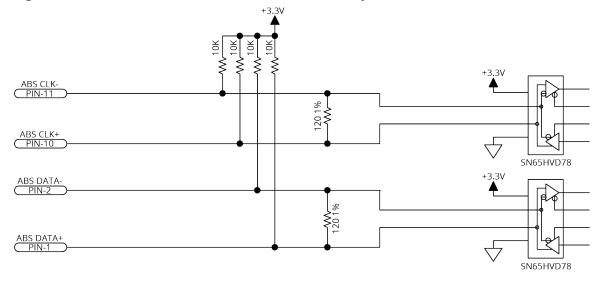

2.5.1.1. Square Wave Encoder (Auxiliary)

The drive accepts RS-422 square wave encoder signals. The drive will generate a feedback fault if it detects an invalid signal state caused by an open or shorted signal connection. Use twisted-pair wiring for the highest performance and noise immunity.

Table 2-36: Square Wave Encoder Specifications

Specification	Value
Encoder Frequency	10 MHz maximum (25 ns minimum edge separation)
x4 Quadrature Decoding	40 million counts/sec

Figure 2-35: Square Wave Encoder Interface (Aux I/O Connector)


2.5.1.2. Absolute Encoder (Auxiliary)

The drive retrieves absolute position data along with encoder fault information through a serial data stream from the absolute encoder. Use twisted-pair wiring for the highest performance and noise immunity. You cannot use an absolute encoder with incremental signals on the Auxiliary I/O Connector.

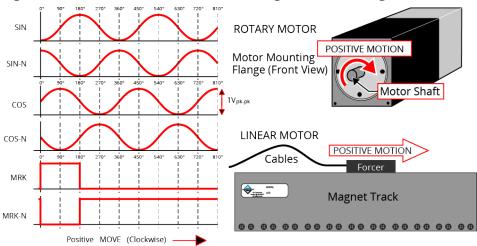
Refer to Figure 2-36 for the serial data stream interface.

Refer to the Help file for information on how to set up your EnDat or BiSS absolute encoder parameters.

Figure 2-36: Absolute Encoder Schematic (Auxiliary I/O Connector)

2.5.1.3. Sine Wave Encoder (Auxiliary) [-MX3 Option]

The Sine Wave Encoder option provides higher positioning resolution by subdividing the fundamental output period of the encoder into smaller increments. The amount of subdivision is specified by the AuxiliaryEncoderMultiplicationFactor parameter. Use Encoder Tuning [A3200: Feedback Tuning] to adjust the value of the gain, offset, and phase balance controller parameters to get the best performance. For more information, refer to the Help file.


You cannot use the sine wave encoder on the auxiliary connector with the -MX3 multiplier option as an input to the PSO. The -MX3 option does not generate emulated quadrature signals from the auxiliary connector.

For the highest performance, use twisted pair double-shielded cable with the inner shield connected to signal common and the outer shield connected to frame ground. Do not join the inner and outer shields in the cable.

Table 2-37: Sine Wave Encoder Specifications

Specification		Value		
		Primary	Auxiliary	
Input Frequency (max)		450 kHz, 2 MHz	450 kHz	
Input Amplitude ⁽¹⁾		0.6 to 1.75 Vpk-pk		
Interpolation Factor (max)	-MX2	65,536	N/A	
	-MX3	65,536	16,384	
-MX2/-MX3 Primary Encoder Channel Interpolation Latency		800 nsec (analog input to quadrature output)		
Input Common Mode		1.5 to 3	3.5 VDC	
(1) Measured as SIN(+) - SIN(-) or COS(+) - COS(-)				

Figure 2-37: Sine Wave Encoder Phasing Reference Diagram

PIN-10 AUX SIN
PIN-10 AUX COS
PIN-11 AUX COS
PIN-20 AUX MRK+

PIN-19 AUX MRK-

Figure 2-38: Sine Wave Encoder Schematic (Auxiliary I/O Connector)

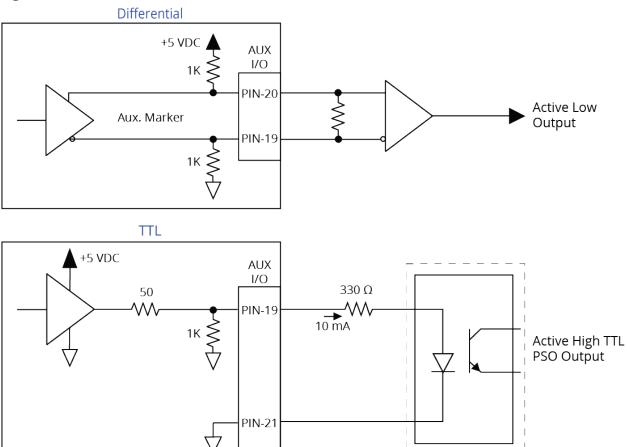
2.5.2. Position Synchronized Output (PSO)

The PSO signal is available on the dual-function AUX Marker/PSO signal lines. Use the PSO pulse external sync functions [A3200: PSOOUTPUT PULSE EXTSYNC command] to configure the auxiliary marker as an output. Refer to the Help file for more information.

Use the PsoOutputConfigureOutput() function [A3200: PSOOUTPUT CONTROL command] to transmit the PSO output signal on the Marker ± pins differentially. Or, use the PsoOutputConfigureOutput() function [A3200: PSOOUTPUT CONTROL command] to configure the Marker - pin as a 5V TTL PSO output.

The differential signal format is recommended when using long cable lengths in noisy environments or when high frequency pulse transmission is required. It is best to locate the line receiver close to the receiving electronics. A 5 V TTL signal is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5 V when a PSO fire event occurs. When the drive is reset or after initial power up, the PSO pins (refer to Table 2-39), are not actively driven and the fail safe state is defined by pull-up and pull-down resistors as shown in Figure 2-39.

The -EB1 I/O option board has additional PSO signal formats. Refer to Section 3.5. for more information.


Table 2-38: PSO Specifications

Specification		Value
Output	TTL	5 V, 16 mA (max)
Maximum PSO Output (Fire) Frequency	TTL	12.5 MHz
Maximum F30 Output (Fire) Frequency	RS-422	12.5 MHz
Output Latency	TTL	15 ns
[Fire event to output change]	RS-422	15 ns

Table 2-39: PSO Pins on the Auxiliary I/O Connector

Pin#	Pin# Description	
19	Auxiliary Marker- / PSO output / TTL Output	Bidirectional
20	20 Auxiliary Marker+ / PSO output	
21	Common	Output

Figure 2-39: PSO Interface

72

2.5.3. Digital Outputs

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in the same configuration. Refer to Figure 2-41 and Figure 2-42.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 2-41. To see an example of a current sinking output that has diode suppression, refer to Figure 2-42.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 2-40: Digital Output Specifications

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 μs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 2-41: Digital Output Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
7	Digital Output 0	Output
8	Digital Output 1	Output
9	Digital Output 2	Output
15	Digital Output Common	Output
16	Digital Output 3	Output

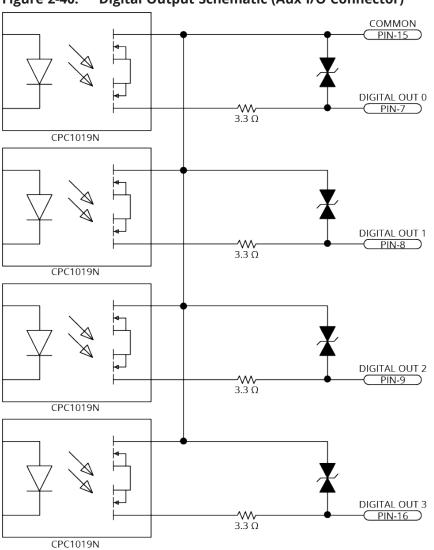


Figure 2-40: Digital Output Schematic (Aux I/O Connector)

AUX I/O Connector

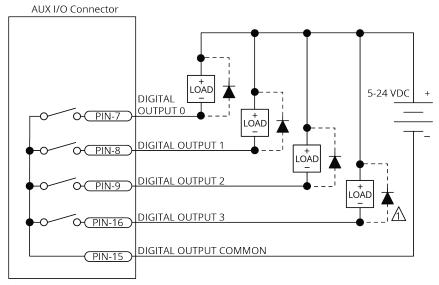
PIN-15

DIGITAL OUTPUT 0

PIN-8

DIGITAL OUTPUT 1

DIGITAL OUTPUT 2


DIGITAL OUTPUT 2

DIGITAL OUTPUT 3

Figure 2-41: Digital Outputs Connected in Current Sourcing Mode

⚠ DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 2-42: Digital Outputs Connected in Current Sinking Mode

 \bigwedge DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

2.5.4. Digital Inputs

You can connect the digital inputs to current sourcing or current sinking devices but you must connect all four inputs in the same configuration. Refer to Figure 2-44 and Figure 2-45. The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

Table 2-42: Digital Input Specifications

Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 2-43: Digital Input Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
17	Digital Input 0 / CCW EOT Input (1)	Input
18	Digital Input 1 / CW EOT Input (1)	Input
24	Digital Input Common	Output
25	Digital Input 2 / Home Input (1)	Input
26	Digital Input 3	Input
(1) Softwa	re configured option	

Figure 2-43: Digital Inputs Schematic (Aux I/O Connector)

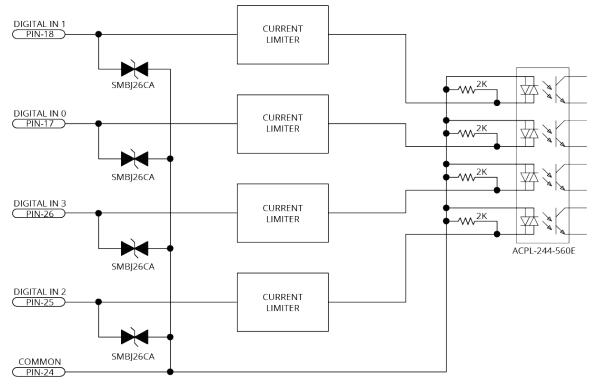


Figure 2-44: Digital Inputs Connected to Current Sourcing Devices

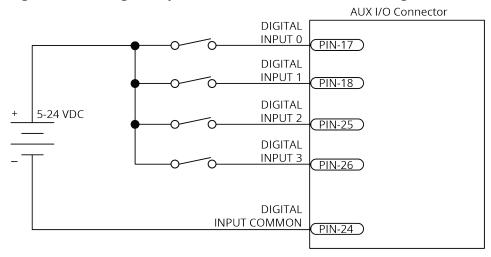
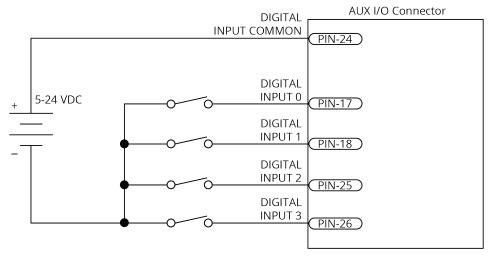
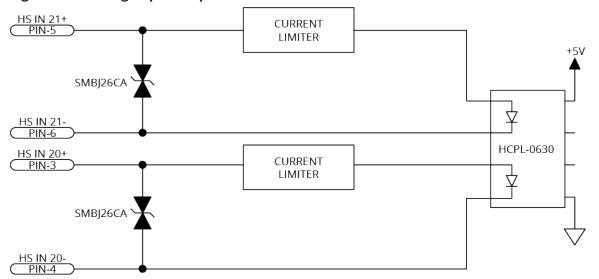



Figure 2-45: Digital Inputs Connected to Current Sinking Devices

2.5.5. High-Speed Inputs

High-speed inputs 20 and 21 can be used as general purpose inputs or as the trigger signal for high speed data collection. Refer to the DriveDataCaptureConfigureTrigger() function [A3200: DATAACQ TRIGGER command] topic in the Help file for more information.

You can use the external PSO synchronization functions [A3200: PSOOUTPUT PULSE EXTSYNC command] to synchronize waveform generation with an external synchronization signal. When you activate this feature, the PSO Waveform module will not generate the configured waveform when an output event is received until the rising edge of the synchronization signal occurs.


Table 2-44: High-Speed Input Specifications

Specification	Value	
Input Voltage	5V - 24 V input voltages	
Input Current	10 mA	
Input Device	HCPL-0630	
Delay	50 nsec	

Table 2-45: High-Speed Input Pins on the Auxiliary I/O Connector

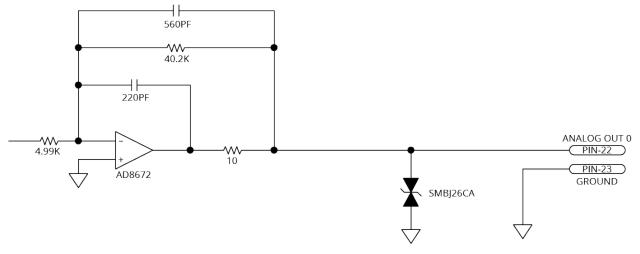
Pin#	Description	In/Out/Bi
3	High-Speed Input 20 + / PSO External Sync. +	Input
4	High-Speed Input 20 - / PSO External Sync	Input
5	High-Speed Input 21 +	Input
6	High-Speed Input 21 -	Input

Figure 2-46: High-Speed Inputs

2.5.6. Analog Output O

The analog output can be set from within a program or it can be configured to echo the state of select servo loop nodes.

The analog output is set to zero when you power on the system or reset the drive.


Table 2-46: Analog Output Specifications

Specification	Value
Output Voltage	-10 V to +10 V
Output Current	5 mA
Resolution (bits)	16 bits

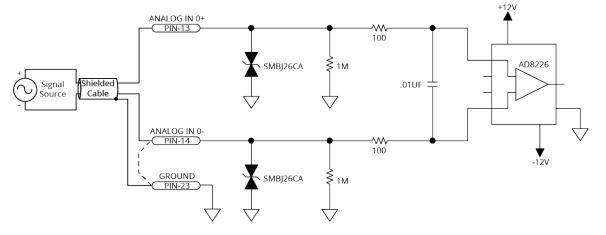
Table 2-47: Analog Output Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
22	Analog Output 0	Output
23	Analog Common	Output

Figure 2-47: Analog Output 0 Schematic

2.5.7. Analog Input O (Differential)

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 2-48.


Table 2-48: Analog Input Specifications

Specification	Value	
(Al+) - (Al-)	+10 V to -10 V ⁽¹⁾	
Resolution (bits)	16 bits	
Input Impedance	1 ΜΩ	
1. Signals outside of this range may damage the input		

Table 2-49: Analog Input Pins on the Auxiliary I/O Connector

Pin#	Description	In/Out/Bi
13	Analog Input 0+ (Differential)	Input
14	Analog Input 0- (Differential)	Input
23	Analog Common	Output

Figure 2-48: Analog Input 0 Schematic

2.6. Brake Power Supply Connector

This port is the power supply connection to the on-board brake control circuit. Refer to Section 2.3.6. for more information about the brake output interface.

Table 2-50: Brake Power Supply Connector Pinout

Pin#	Description	In/Out/Bi	Connector
1	Brake Power Supply (+)	Input	+
2	Brake Power Supply (-)	Input	in in its contract to the cont

Table 2-51: Mating Connector Part Numbers for the Brake Power Supply Connector

Description	Aerotech P/N	Phoenix P/N	Tightening Torque (Nm)	Wire Size: AWG [mm²]
2-Pin Terminal Block	ECK02390	1827616	0.22 - 0.25	0.14 - 1.5 [26-16]

2.7. HyperWire Interface

The HyperWire bus is the high-speed communications connection from the controller. It operates at 2 gigabits per second. The controller sends all command and configuration information through the HyperWire bus.

HyperWire cables can be safely connected to or disconnected from a HyperWire port while the PC and/or drive is powered on. However, any changes to the HyperWire network topology will disrupt communication and you must reset the controller to re-establish communication.

WARNING: Do not connect or disconnect HyperWire cables while you are loading firmware or damage to the drives may occur.

Table 2-52: HyperWire Card Part Number

Part Number	Description
HYPERWIRE-PCIE	HyperWire adapter, PCle x4 interface

Table 2-53: HyperWire Cable Part Numbers

Part Number	Description
HYPERWIRE-AO10-5	HyperWire cable, active optical, 0.5 m
HYPERWIRE-AO10-10	HyperWire cable, active optical, 1.0 m
HYPERWIRE-AO10-30	HyperWire cable, active optical, 3.0 m
HYPERWIRE-AO10-50	HyperWire cable, active optical, 5.0 m
HYPERWIRE-AO10-200	HyperWire cable, active optical, 20.0 m

2.8. External Shunt Option [-SX1]

4

DANGER: The shunt resistor dissipates a high quantity of power. To prevent the danger of electric shock or fire, you must obey the precautions that follow:

- Correctly size, mount, and protect the external shunt resistor.
- Do not touch the shunt resistor terminals. There are lethal voltages on the terminals.
- Do not touch the surface of the drive or the external shunt resistor. The temperature can exceed 70°C.
- Restrict access to the shunt resistor while it is connected to a power source.

The -SX1 option provides a connection for a user-provided shunt resistor to dissipate excess energy and keep the internal drive voltage within safe levels. The drive switches this resistor "ON" when the internal bus voltage reaches approximately 380 VDC. This option is generally required for systems that have a large amount of stored mechanical energy that must be dissipated during deceleration.

Table 2-54: -SX1 Component Information

Component	Description	Aerotech P/N
Recommended Shunt Resistor	50 Ω (min), 300 W	ECR01039
Recommended Shart Resistor	Vishay/Dale: RBEF030050R00KFBVT	ECR01039
	Screw Torque Value: 0.6 - 0.8 N·m	
1-Pin Mating Connector [QTY. 2]	Wire Size: 0.2 - 6 mm ² [24-10 AWG]	ECK02452
	Phoenix: 0708250	
F101 Fuse on the Control Board	8 A S.B.	EIF01022
Recommended Wire Size	16 AWG (1.3 mm ²) High Temperature	

Equation 1:

Calculate the kinetic energy of the system. Any energy that is not lost to the system could be regenerated to the DC bus.

$$E_M = \left[rac{1}{2}
ight] \left[J_M + J_L
ight] \omega_M^2$$
 or $E_M = \left[rac{1}{2}
ight] \left[M_M + M_L
ight] v_M^2$ (for inear motors)

J_M rotor inertia (kg⋅m²)

J_L load inertia (kg⋅m²)

 $\omega_{\text{m}} \qquad \text{motor speed before deceleration (rad/s)}$

 M_M forcer mass (kg) M_L load mass (kg) v_m velocity (m/s)

Equation 2:

You will need a shunt resistor if the regenerated energy is greater than the Maximum Additional Storage Energy that the internal bus capacitor can store (Table 2-55).

$$E_{Ca} = rac{1}{2}C\left(V_M^2 - V_{NOM}^2\right)$$

C bus capacitor (F) [1,200 μ F]

V_M turn on voltage for shunt circuit (V) [380 V] , nominal bus voltage (V) [160 V or 320 V, Typical]

V_{NOM} [160 V or 320 V, Typical]

Table 2-55: Maximum Additional Storage Energy for a Standard iXC4e/XC4e

Bus Voltage	Maximum Additional Energy	
160 V	71.3 J	
320 V	25.2 J	

If a shunt resistor is required, calculate the value of resistance necessary to dissipate the energy.

Equations 3, 4, and 5:

Calculate the parameters of the shunt resistor.

Equation 3:

$$P_{PEAK} = rac{E_M - E_{Ca}}{t_D}$$

 P_{PEAK} peak power that the regeneration circuit must accommodate (W) t_D deceleration time (s)

Equation 4:

$$P_{AV} = rac{E_M - E_{Ca}}{t_{CYCLE}}$$

P_{AV} average power dissipated on shunt resistor (W)

t_{CYCLE} time between deceleration events (s)

Equation 5:

$$R=rac{\left(2V_{M}-V_{HYS}
ight)^{2}}{4P_{PEAK}}$$

V_{HYS} hysteresis voltage of regeneration circuit (V) [10 V, Typical]

Additional useful equations:

1 lb·ft = 1.356 N·m

1 rad/s = 9.55 rpm

2.9. Sync Port

The Sync port is a bi-directional high speed proprietary interface that lets you transmit encoder signals between drives. This is typically used for multi-axis PSO applications where one or two drives send their encoder signals to a main drive that has the PSO logic and PSO output signal. The drive contains two Sync ports, labeled A and B.

To avoid signal contention, all Sync ports default to the input state during reset and immediately after power is applied to the drive.

Table 2-56: Sync-Related Functions

Function	Description	
DriveEncoderOutputConfigureDivider(),		
DriveEncoderOutputConfigureInput(),	Configuration of Company of the Company	
DriveEncoderOutputOn(),	Configure each Sync port as an input or an output	
DriveEncoderOutputOff()	output	
[A3200: ENCODER OUT command]		
PsoDistanceConfigureInputs()		
[A3200: PSOTRACK INPUT command]	Let the PSO to track the SYNC A or SYNC B port.	
PsoWindowConfigureInput()	Let the 130 to track the 31NC A of 31NC B port.	
[A3200: PSOWINDOW INPUT command]		

The Sync port uses low-voltage differential signaling (LVDS) and standard USB 3.0 type A (cross over) cables.

Table 2-57: Sync Port Cables

Part Number	Desciption
CBL-SYNC-3	Length 3 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-5	Length 5 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-7	Length 7 dm; Connectors: USB Type A to USB Type A
CBL-SYNC-10	Length 10 dm; Connectors: USB Type A to USB Type A

2.10. Industrial Ethernet (iXC4e Only)

The controller is equipped with 100BASE-TX Industrial Ethernet ports.

IMPORTANT: Industrial Ethernet is only available on the iXC4e.

- For the location of the ports, refer to Figure 1-1.
- For cable part numbers, refer to Table 4-1.
- For more information, refer to the Help system.

2.11. System Interconnection

Figure 2-49: Drive-Based System Wiring Drawing (Best Practice)

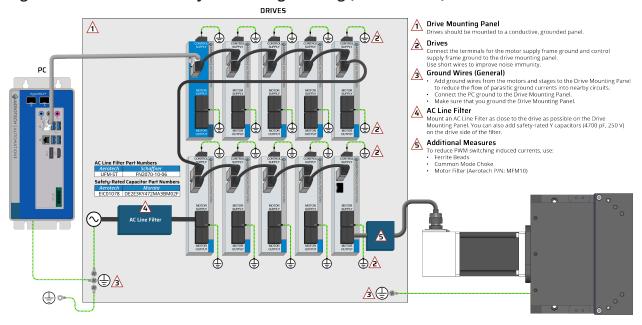
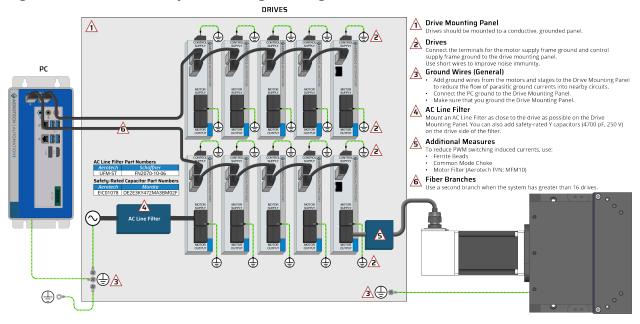



Figure 2-50: PC-Based System Wiring Drawing (Best Practice)

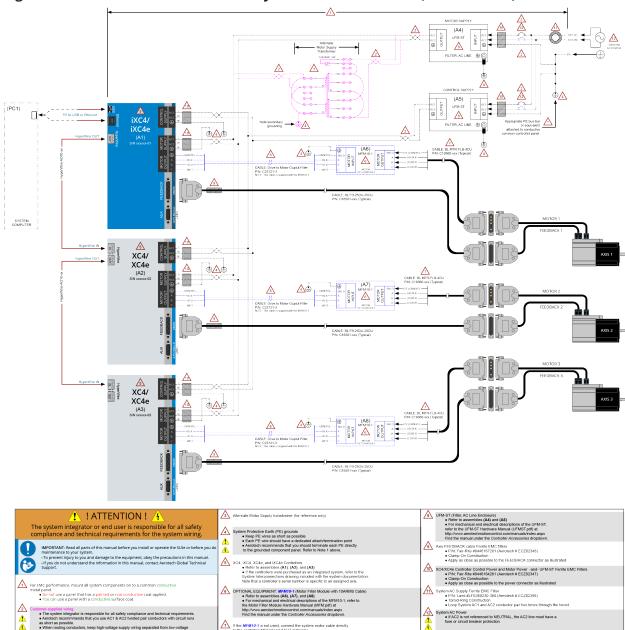


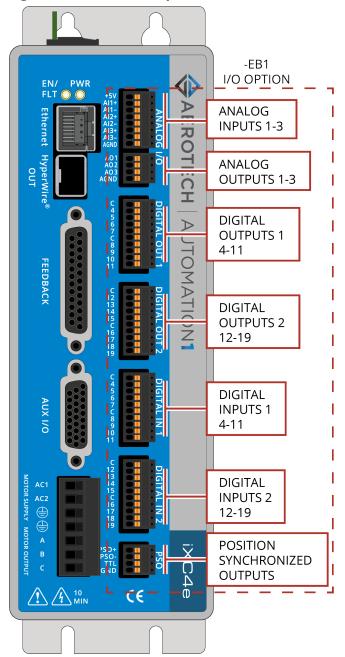
Figure 2-51: Drive-Based Controller System Interconnection (Best Practice)

(A4) UFM-ST & TER, AC LI (A5) UFM-ST HyperMire XC4/ XC4e (A1) SIN xxxxxx-01 SYSTEM COMPUTER XC4/ XC4e (A2) SiN xxxxxxx00 Δ XC4/ XC4e (A3) SiN xxxxxx-03 UFM-ST (Filter, AC Line Enclosure)

• Refer to assemblies (A4) and (A5)

• For mechanical and electrical descriptions of the UFM-ST refer to the UFM-ST Herdware Manual (UFM-ST pdf) at http://www.aerotechumdoncontrot commansals/index.aspx.
Find the manual under the Controller Accessories dropdow 🚺 ! ATTENTION! 👍 Alternate Motor Supply transformer (for reference only)

Figure 2-52: PC-Based Controller System Interconnection (Best Practice)


2.12. PC Configuration and Operation Information

For more information about hardware requirements, PC configuration, programming, system operation, and utilities, refer to the Help file.

Chapter 3: -EB1 Option Expansion Board

The -EB1 I/O option board has 16 digital inputs, 16 digital outputs, 3 analog inputs, 3 analog outputs, and PSO outputs.

Figure 3-1: -EB1 I/O Option Board Connectors (iXC4e shown)

3.1. Digital Outputs [-EB1]

Optically-isolated solid-state relays drive the digital outputs. You can connect the digital outputs in current sourcing or current sinking mode but you must connect all four outputs in a port in the same configuration. Refer to Figure 3-3 and Figure 3-4.

The digital outputs are not designed for high-voltage isolation applications and they should only be used with ground-referenced circuits.

You must install suppression diodes on digital outputs that drive relays or other inductive devices. To see an example of a current sourcing output that has diode suppression, refer to Figure 3-3. To see an example of a current sinking output that has diode suppression, refer to Figure 3-4.

The digital outputs have overload protection. They will resume normal operation when the overload is removed.

Table 3-1: Digital Output Specifications [-EB1]

Digital Output Specifications	Value
Maximum Voltage	24 V (26 V Maximum)
Maximum Sink/Source Current	250 mA/output
Output Saturation Voltage	0.9 V at maximum current
Output Resistance	3.7 Ω
Rise / Fall Time	250 μs (2K pull up to 24V)
Reset State	Output Off (High Impedance State)

Table 3-2: Digital Output 1 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Output Common for Outputs 4-7	Output	
2	Output 4 (Optically-Isolated)	Output	C I •
3	Output 5 (Optically-Isolated)	Output	4
4	Output 6 (Optically-Isolated)	Output	6
5	Output 7 (Optically-Isolated)	Output	7
6	Output Common for Outputs 8-11	Output	C
7	Output 8 (Optically-Isolated)	Output	8
8	Output 9 (Optically-Isolated)	Output	9
9	Output 10 (Optically-Isolated)	Output	10
10	Output 11 (Optically-Isolated)	Output	

Table 3-3: Mating Connector Part Numbers for the Digital Output 1 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]

Table 3-4: Digital Output 2 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Output Common for Outputs 12-15	Output	
2	Output 12 (Optically-Isolated)	Output	C II •
3	Output 13 (Optically-Isolated)	Output	12
4	Output 14 (Optically-Isolated)	Output	13
5	Output 15 (Optically-Isolated)	Output	15
6	Output Common for Outputs 16-19	Output	C □ ▶
7	Output 16 (Optically-Isolated)	Output	16
8	Output 17 (Optically-Isolated)	Output	17
9	Output 18 (Optically-Isolated)	Output	18
10	Output 19 (Optically-Isolated)	Output	

Table 3-5: Mating Connector Part Numbers for the Digital Output 2 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]

COMMON PIN-1 DIGITAL OUT 4 -**W**-3.3 Ω CPC1019N DIGITAL OUT 5 CPC1019N DIGITAL OUT 6
PIN-4 -**W**-3.3 Ω CPC1019N DIGITAL OUT 7 CPC1019N

Figure 3-2: **Digital Outputs Schematic [-EB1]**

DIGITAL OUTPUT COM

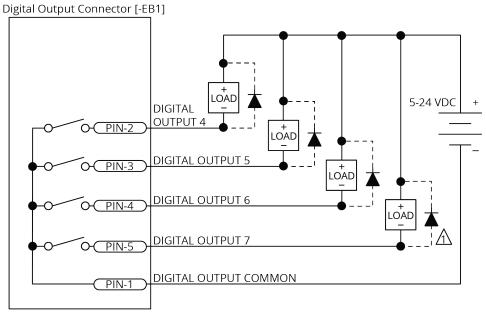
PIN-1

DIGITAL OUTPUT 4

PIN-2

DIGITAL OUTPUT 5

DIGITAL OUTPUT 6


DIGITAL OUTPUT 6

DIGITAL OUTPUT 7

Figure 3-3: Digital Outputs Connected in Current Sourcing Mode [-EB1]

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

Figure 3-4: Digital Outputs Connected in Current Sinking Mode [-EB1]

DIODE REQUIRED ON EACH OUTPUT THAT DRIVES AN INDUCTIVE DEVICE (COIL), SUCH AS A RELAY.

3.2. Digital Inputs [-EB1]

Input bits are arranged in groups of 4 and each group shares a common pin. This lets a group be connected to current sourcing or current sinking devices, based on the connection of the common pin in that group.

To be able to connect an input group to current sourcing devices, connect the input group's common pin to the power supply return (-). Refer to Figure 3-6.

To be able to connect an input group to current sinking devices, connect the input group's common pin to the power supply source (+). Refer to Figure 3-7.

The digital inputs are not designed for high-voltage isolation applications. They should only be used with ground-referenced circuits.

Table 3-6: Digital Input Specifications [-EB1]

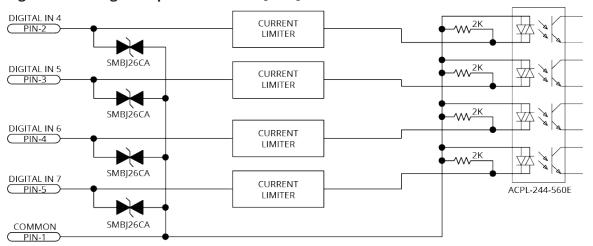
Input Voltage	Approximate Input Current	Turn On Time	Turn Off Time
+5 V to +24 V	6 mA	10 µs	43 µs

Table 3-7: Digital Input 1 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Input Common for Inputs 4-7	Output	
2	Input 4 (Optically-Isolated)	Input	
3	Input 5 (Optically-Isolated)	Input	4
4	Input 6 (Optically-Isolated)	Input	6
5	Input 7 (Optically-Isolated)	Input	7
6	Input Common for Inputs 8-11	Output	G
7	Input 8 (Optically-Isolated)	Input	8
8	Input 9 (Optically-Isolated)	Input	10
9	Input 10 (Optically-Isolated)	Input	11
10	Input 11 (Optically-Isolated)	Input	

Table 3-8: Mating Connector Part Numbers for the Digital Input 1 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm ² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]


Table 3-9: Digital Input 2 Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	Input Common for Inputs 12-15	Output	
2	Input 12 (Optically-Isolated)	Input	
3	Input 13 (Optically-Isolated)	Input	12
4	Input 14 (Optically-Isolated)	Input	13
5	Input 15 (Optically-Isolated)	Input	15
6	Input Common for Inputs 16-19	Output	CI
7	Input 16 (Optically-Isolated)	Input	16
8	Input 17 (Optically-Isolated)	Input	17
9	Input 18 (Optically-Isolated)	Input	18
10	Input 19 (Optically-Isolated)	Input	

Table 3-10: Mating Connector Part Numbers for the Digital Input 2 Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
10-Pin Terminal Block	ECK02395	Phoenix 1700841	0.5 - 0.14 [20-26]

Figure 3-5: Digital Inputs Schematic [-EB1]

IMPORTANT: Each bank of four inputs must be connected in an all sourcing or all sinking configuration.

Figure 3-6: Digital Inputs Connected to Current Sourcing (PNP) Devices [-EB1]

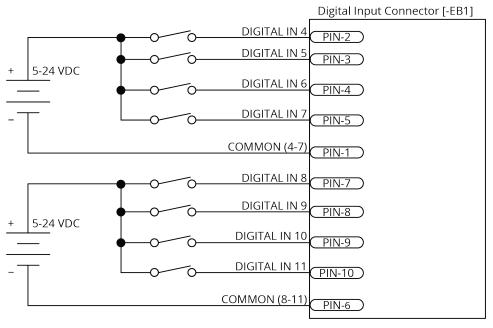
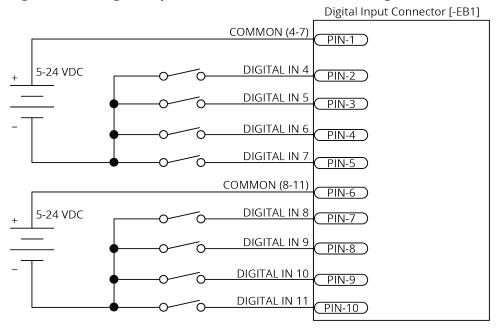



Figure 3-7: Digital Inputs Connected to Current Sinking (NPN) Devices [-EB1]

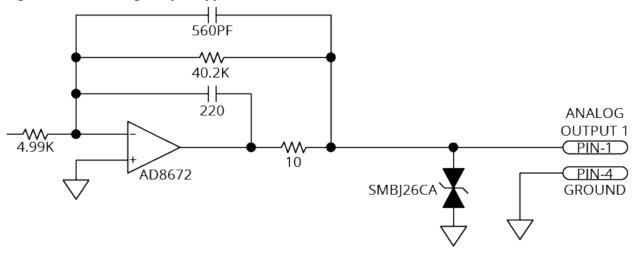
3.3. Analog Outputs [-EB1]

The analog outputs can be set from within a program or they can be configured to echo the state of select servo loop nodes.

The analog outputs are set to zero when you power on the system or reset the drive.

Table 3-11: Analog Output Specifications [-EB1]

Specification	Value
Output Voltage	-10 V to +10 V
Output Current	5 mA
Resolution (bits)	16 bits


Table 3-12: Analog Output Connector Pinout [-EB1]

Pin #	Description	In/Out/Bi	Connector
1	Analog Output 1	Output	
2	Analog Output 2	Output	2
3	Analog Output 3	Output	3 •
4	Ground	N/A	4

Table 3-13: Mating Connector Part Numbers for the Analog Output Connector [-EB1]

Туре	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
4-Pin Terminal Block	ECK02399	Phoenix 1768004	0.5- 0.14 [20-26]

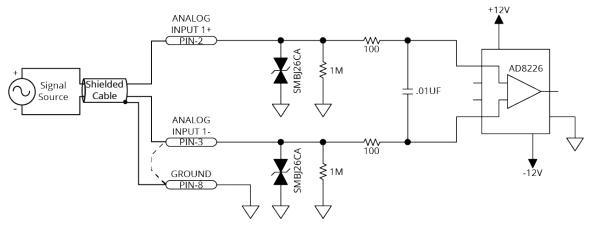
Figure 3-8: Analog Output Typical Connection [-EB1]

3.4. Analog Inputs [-EB1]

To interface to a single-ended, non-differential voltage source, connect the signal common of the source to the negative input and connect the analog source signal to the positive input. A floating signal source must be referenced to the analog common. Refer to Figure 3-9.

Table 3-14: Differential Analog Input Specifications [-EB1]

Specification	Value	
(Al+) - (Al-)	+10 V to -10 V ⁽¹⁾	
Resolution (bits)	16 bits	
Input Impedance	1 ΜΩ	
1. Signals outside of this range may damage the input		


Table 3-15: Analog Input Connector Pinout [-EB1]

Pin#	Description	In/Out/Bi	Connector
1	+5V (250 mA max)	Output	
2	Analog Input 1+	Input	
3	Analog Input 1-	Input	3
4	Analog Input 2+	Input	4
5	Analog Input 2-	Input	5
6	Analog Input 3+	Input	6 1 •
7	Analog Input 3-	Input	7
8	Ground	N/A	8

Table 3-16: Mating Connector Part Numbers for the Analog Input Connector [-EB1]

Mating Connector	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
8-Pin Terminal Block	ECK02397	Phoenix 1908101	0.5 - 0.14 [20-26]

Figure 3-9: Analog Input Typical Connection [-EB1]

3.5. PSO Interface [-EB1]

The Position Synchronized Output (PSO) signal is available on the -EB1 option board in two signal formats: TTL and Isolated.

The PSO signal is also available on the AUX I/O connector. Refer to Section 2.5.2.

Table 3-17: PSO Specifications [-EB1]

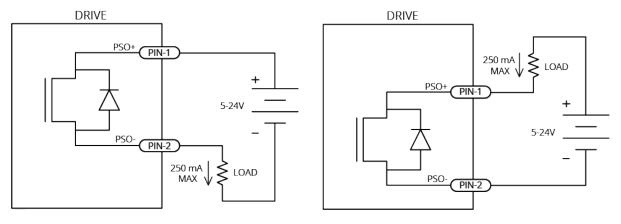
Specification		Value
Output	TTL	5 V, 16 mA (max)
Output	Isolated	5-24 V, 250 mA
Maximum PSO Output (Fire) Frequency	TTL	12.5 MHz
Maximum P3O Output (Fire) Frequency	Isolated	5 MHz
Output Latency	TTL	5 ns
[Fire event to output change]	Isolated	150 ns

Table 3-18: PSO Interface Connector Pinout [-EB1]

Pin #	Description	In/Out/Bi	Connector
1	PSO Output+	Output	
2	PSO Output-	Output	2
3	PSO Output (TTL)	Output	3
4	Ground	N/A	4

Table 3-19: Mating Connector Part Numbers for the PSO Interface Connector [-EB1]

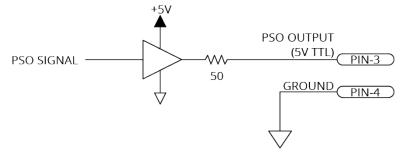
Туре	Aerotech P/N	Third Party P/N	Wire Size: mm² [AWG]
4-Pin Terminal Block	ECK02399	Phoenix 1768004	0.5- 0.14 [20-26]


Isolated Signals

This output signal is a fully-isolated 5-24V compatible output capable of sourcing or sinking current. This output is normally open and only conducts current when a PSO fire event occurs.

The PSO Isolated Outputs are overload protected and will turn off if the maximum output current is exceeded.

Figure 3-10: PSO Output Sources Current


Figure 3-11: PSO Output Sinks Current

TTL Signals

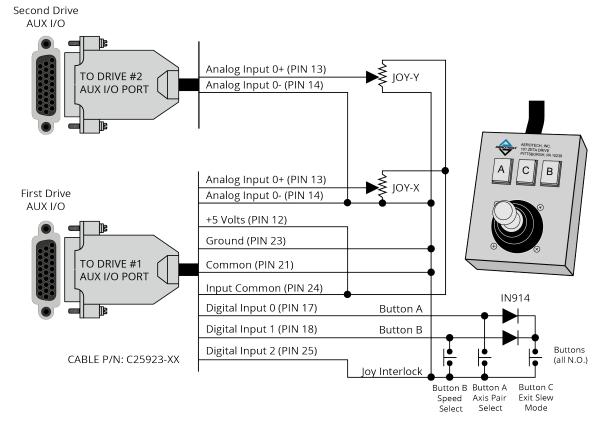
This output signal is a 5V TTL signal which is used to drive an opto coupler or general purpose TTL input. This signal is active high and is driven to 5V when a PSO fire event occurs.

Figure 3-12: PSO TTL Outputs Schematic

Chapter 4: Cables and Accessories

IMPORTANT: Find Aerotech cable drawings on the website at http://www.aerotechmotioncontrol.com/manuals/index.aspx.

Table 4-1: Standard Interconnection Cables


Cable Part #	Description	
Joystick	Refer to Section 4.1.	
ECZ01231	BBA32 Interconnect Cable	
ENET-CAT5e-xx ^(1, 2)	Ethernet CAT5e Cable	
USB-AMCM-xx ^(1, 2)	USB Cable A-Male to C-Male	
(1) The "-xx" indicates length in decimeters.		
(2) iXC4e Only		

4.1. Joystick Interface

Aerotech Multi-Axis Joystick (NEMA12 (IP54) rated) is powered from 5 V and has a nominal 2.5 V output in the center detent position. Three buttons are used to select axis pairs and speed ranges. An optional interlock signal is used to indicate to the controller that the joystick is present. Joystick control will not activate unless the joystick is in the center location. Third party devices can be used provided they produce a symmetric output voltage within the range of -10 V to +10 V.

Connecting joystick with an Aerotech cable, all Aerotech cables are labeled to identify the connector and connections. The joystick parameters must be set to match the analog and digital I/O connections. Refer to the Help file for programming information about how to change joystick parameters.

Figure 4-1: Two Axis Joystick Interface (to the Aux I/O of two drives)

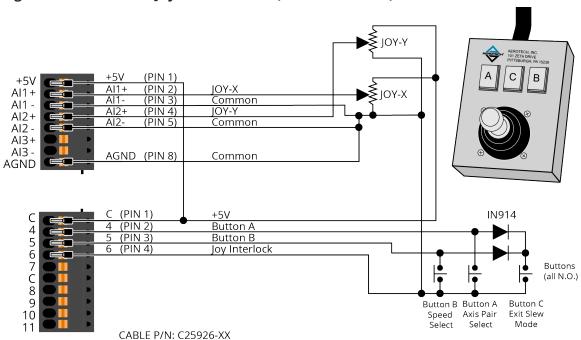


Figure 4-2: Two Axis Joystick Interface (to the I/O board)

4.2. Handwheel Interface

A handwheel can be used to manually control axis position. The handwheel must provide 5V differential quadrature signals to the drive.

IMPORTANT: You can find instructions on how to enable the handwheel in the online Help file.

Connect a handwheel to the Aux I/O as shown in Figure 4-3 or Figure 4-4.

Figure 4-3: Handwheel Interconnection to Aux I/O Connector

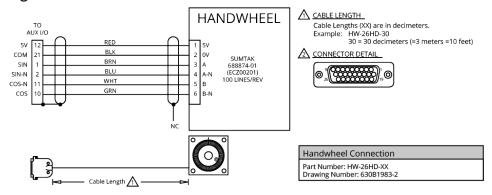
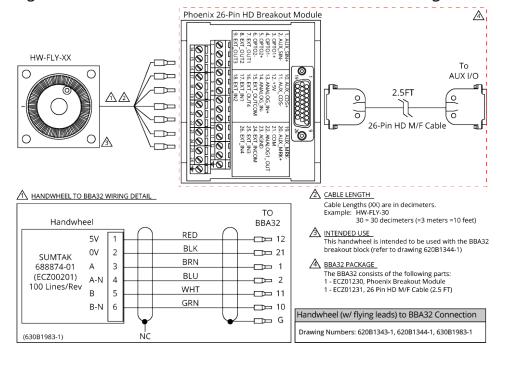



Figure 4-4: Handwheel Interconnection to the Aux I/O through a BBA32 Module

Chapter 5: Maintenance

IMPORTANT: For your own safety and for the safety of the equipment:

- Do not remove the cover of the iXC4e/XC4e.
- Do not attempt to access the internal components.

A fuse that needs to be replaced indicates that there is a more serious problem with the system or setup. Contact Global Technical Support for assistance.

DANGER: If you must remove the covers and access any internal components be aware of the risk of electric shock.

- 1. Disconnect the Mains power connection.
- 2. Wait at least ten (10) minutes after removing the power supply before doing maintenance or an inspection. Otherwise, there is the danger of electric shock.
- 3. All tests must be done by an approved service technician. Voltages inside the controller and at the input and output power connections can kill you.

Table 5-1: LED Description

LED	Color	Description		
PWR	GREEN	The light will illuminate and remain illuminated while power is applied.		
	GREEN	The axis is Enabled.		
EN/FLT	RED	The axis is in a Fault Condition.		
	GREEN/RED (alternates)	The axis is Enabled in a Fault Condition.		
		or		
		The light is configured to blink for setup.		

Table 5-2: Troubleshooting

Symptom	Possible Cause and Solution
No Communication	Make sure the power LED is illuminated (this indicates that power is present).
	Make sure that all communication cables (HyperWire, for example) are fully inserted in their ports.

5.1. Preventative Maintenance

Do an inspection of the iXC4e/XC4e and the external wiring one time each month. It might be necessary to do more frequent inspections based on:

- The operating conditions of the system.
- How you use the system.

Table 5-3: Preventative Maintenance

Check	Action to be Taken		
Examine the chassis for hardware and parts that are damaged or loose. It is not necessary to do an internal inspection unless you think internal damage occurred.	Repair all damaged parts.		
Do an inspection of the cooling vents.	Remove all material that collected in the vents.		
Examine the work area to make sure there are no fluids and no electrically conductive materials.	Do not let fluids and electrically conductive material go into the chassis.		
Examine all cables and connections to make sure they are correct.	Make sure that all connections are correctly attached and not loose. Replace cables that are worn. Replace all broken connectors.		

Cleaning

DANGER: Before you clean the iXC4e/XC4e, disconnect the electrical power from the drive.

Use a clean, dry, soft cloth to clean the iXC4e/XC4e. If necessary, use a cloth that is moist with water or isopropyl alcohol. If you use a moist cloth, make sure that moisture does not go into the drive. Also make sure that it does not go onto the outer connectors and components. Internal contamination from the cleaning solution can cause corrosion and electrical short circuits.

Do not clean the labels with a cleaning solution because it might remove the label information.

5.2. Fuse Specifications

WARNING: Replace fuses only with the same type and value.

Table 5-4: Control Board Fuse Specifications

Fuse	Description	Size	SCCR (1)	Aerotech P/N	Third Party P/N		
F100	Control Power at Line Input (L)	2 A S.B.	35 A	EIF01044	Littelfuse 0877002.MXEP		
F101	-SX1 (External Shunt) Option	8 A S.B.	1500 A	EIF01022	Littelfuse 0215008.HXP		
F102	Motor Bus Supply at AC1 (-10 Peak Current Option)	5 A S.B.	- 1500 A	EIF01023	Littelfuse 215005.HXP		
	Motor Bus Supply at AC1 (-20/-30 Peak Current Option)	10 A S.B.		EIF01020	Littelfuse 0215010.HXP		
(1) Short circuit current rating.							

This page intentionally left blank.

Appendix A: Warranty and Field Service

Aerotech, Inc. warrants its products to be free from harmful defects caused by faulty materials or poor workmanship for a minimum period of one year from date of shipment from Aerotech. Aerotech's liability is limited to replacing, repairing or issuing credit, at its option, for any products that are returned by the original purchaser during the warranty period. Aerotech makes no warranty that its products are fit for the use or purpose to which they may be put by the buyer, whether or not such use or purpose has been disclosed to Aerotech in specifications or drawings previously or subsequently provided, or whether or not Aerotech's products are specifically designed and/or manufactured for buyer's use or purpose. Aerotech's liability on any claim for loss or damage arising out of the sale, resale, or use of any of its products shall in no event exceed the selling price of the unit.

THE EXPRESS WARRANTY SET FORTH HEREIN IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE. IN NO EVENT SHALL AEROTECH BE LIABLE FOR CONSEQUENTIAL OR SPECIAL DAMAGES.

Return Products Procedure

Claims for shipment damage (evident or concealed) must be filed with the carrier by the buyer. Aerotech must be notified within thirty (30) days of shipment of incorrect material. No product may be returned, whether in warranty or out of warranty, without first obtaining approval from Aerotech. No credit will be given nor repairs made for products returned without such approval. A "Return Materials Authorization (RMA)" number must accompany any returned product(s). The RMA number may be obtained by calling an Aerotech service center or by submitting the appropriate request available on our website (www.aerotech.com). Products must be returned, prepaid, to an Aerotech service center (no C.O.D. or Collect Freight accepted). The status of any product returned later than thirty (30) days after the issuance of a return authorization number will be subject to review.

Visit Global Technical Support Portal for the location of your nearest Aerotech Service center.

Returned Product Warranty Determination

After Aerotech's examination, warranty or out-of-warranty status will be determined. If upon Aerotech's examination a warranted defect exists, then the product(s) will be repaired at no charge and shipped, prepaid, back to the buyer. If the buyer desires an expedited method of return, the product(s) will be shipped collect. Warranty repairs do not extend the original warranty period.

Fixed Fee Repairs - Products having fixed-fee pricing will require a valid purchase order or credit card particulars before any service work can begin.

All Other Repairs - After Aerotech's evaluation, the buyer shall be notified of the repair cost. At such time the buyer must issue a valid purchase order to cover the cost of the repair and freight, or authorize the product(s) to be shipped back as is, at the buyer's expense. Failure to obtain a purchase order number or approval within thirty (30) days of notification will result in the product(s) being returned as is, at the buyer's expense.

Repair work is warranted for ninety (90) days from date of shipment. Replacement components are warranted for one year from date of shipment.

Rush Service

At times, the buyer may desire to expedite a repair. Regardless of warranty or out-of-warranty status, the buyer must issue a valid purchase order to cover the added rush service cost. Rush service is subject to Aerotech's approval.

On-site Warranty Repair

If an Aerotech product cannot be made functional by telephone assistance or by sending and having the customer install replacement parts, and cannot be returned to the Aerotech service center for repair, and if Aerotech determines the problem could be warranty-related, then the following policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs. For warranty field repairs, the customer will not be charged for the cost of labor and material. If service is rendered at times other than normal work periods, then special rates apply.

If during the on-site repair it is determined the problem is not warranty related, then the terms and conditions stated in the following "On-Site Non-Warranty Repair" section apply.

On-site Non-Warranty Repair

If any Aerotech product cannot be made functional by telephone assistance or purchased replacement parts, and cannot be returned to the Aerotech service center for repair, then the following field service policy applies:

Aerotech will provide an on-site Field Service Representative in a reasonable amount of time, provided that the customer issues a valid purchase order to Aerotech covering all transportation and subsistence costs and the prevailing labor cost, including travel time, necessary to complete the repair.

Service Locations

http://www.aerotech.com/contact-sales.aspx?mapState=showMap

USA,	CANADA,	MEXICO
	Aerotech,	lnc.

Global Headquarters

TAIWAN

Aerotech Taiwan Full-Service Subsidiary

CHINA

Aerotech China Full-Service Subsidiary

UNITED KINGDOM

Aerotech United Kingdom Full-Service Subsidiary

GERMANY

Aerotech Germany Full-Service Subsidiary

Appendix B: Revision History

Revision	Description
2.05	Added support for Industrial Ethernet
2.04	Added support for Three Phase Stepper Motors: Section 2.2.4.
	The following sections have been updated:
2.03	• Section 2.1.2.
	Section 5.2.
	The following sections have been updated:
2.02	EU Declaration of Conformity
2.02	Agency Approvals
	Added iXC4e
2.01	Absolute Encoder support on the Auxiliary I/O connector has been added.
2.01	System Wiring (best practices) drawing has been added
2.00	General Update
	The following sections have been updated:
1.02	Agency Approvals
1.02	Section 2.3.1. Primary Encoder Inputs
	Section 2.5.1. Auxiliary Encoder Inputs
4.04	The following sections have been updated:
1.01	• Section 2.1.2.
1.00	Section 2.11. Now Manual
1.00	New Manual

This page intentionally left blank.

Index		Analog Input Typical Connection [-EB1]	98
		Analog Inputs [-EB1]	98
		Analog Output 0 on the Aux I/O Connector	78
-		Analog Output 0 Schematic (Aux I/O Connector)	78
-EB1		Analog Output 0 Specifications (Aux I/O Connector)	78
Analog Inputs	98	Analog Output Connector [-EB1] Mating Connector Par	
Analog Outputs	97	Numbers	97
Digital Inputs	94	Analog Output Connector Pinout [-EB1]	97
Digital Outputs	90	Analog Output Pins (Aux I/O Connector)	78
I/O Option Board	89	Analog Output Specifications [-EB1]	97
Position Synchronized Output (PSO) Interface	99	Analog Output Typical Connection [-EB1]	97
-MX2	48	Analog Outputs [-EB1]	97
-MX3	48,68	Aux Connector	
-SX1	10,00	Analog Encoder	68
External Shunt Option	82	Sine Wave Encoder	68
External Share option	02	Aux I/O Connector	
2		Analog Input 0	79
		Analog Output 0	78
2006/42/EC	9	Auxiliary Encoder Inputs	65
2011/65/EU	9	Digital Inputs	75
2014/30/EU	9	Digital Outputs	72
2014/35/EU	9	High-Speed User Inputs	77
		Position Synchronized Output	70
A		PSO	70
Absolute Encoder (Auxiliary I/O Connector)	67	Aux I/O Connector Mating Connector Part Numbers	64
Absolute Encoder (Feedback Connector)	47	Auxiliary Encoder Inputs (Aux I/O Connector)	65
Absolute Encoder Schematic (Auxiliary I/O Connector)	67	Auxiliary I/O Connector	64
Absolute Encoder Schematic (Feedback Connector)	47	Absolute Encoder	67
AC line filter	28	Analog Encoder	48
Agency Approvals	10	RS-422 Line Driver Encoder	66
Altitude	25	Sine Wave Encoder	48
Ambient Temperature	25	Square Wave Encoder	66
Analog Encoder (Aux Connector)	68	Auxiliary I/O Connector Pinout	64
Analog Encoder (Auxiliary I/O Connector)	48	Auxiliary I/O Pins (Aux I/O Connector)	65
Analog Encoder Phasing Reference Diagram	68		
Analog Encoder Schematic (Auxiliary I/O Connector)	69	В	
Analog Encoder Specifications (Auxiliary I/O Connector	68	BiSS absolute encoder	47,67
Analog Encoder Specifications (Feedback Connector)	48	Brake Connected to the Feedback Connector	57
Analog Input 0 on the Aux I/O Connector	79	Brake Control Relay Specifications	57
Analog Input 0 Schematic (Aux I/O Connector)	79	Brake Output Connector Pinout	80
Analog Input 0 Specifications (Aux I/O Connector)	79	Brake Output Pins on the Feedback Connector	57
Analog Input Connector [-EB1] Mating Connector Part	_	Brake Outputs (Feedback Connector)	57
Numbers	98	Brake Power Supply Connector	80
Analog Input Connector Pinout [-EB1]	98	Brake Power Supply Connector Mating Connector Part	
Analog Input Pins (Aux I/O Connector)	79	Numbers	80

Brushless Motor Configuration (Motor Power Output Connector)	38	Digital Input 1 Connector [-EB1] Mating Connector Part Numbers	94
Brushless Motor Connections (Motor Power Output		Digital Input 1 Connector Pinout [-EB1]	94
Connector)	38	Digital Input 2 Connector [-EB1] Mating Connector Part	
Brushless Motor Phasing Goal	40	Numbers	95
Brushless Motor Phasing Oscilloscope Example	40	Digital Input 2 Connector Pinout [-EB1]	95
Brushless Motor Powered Motor Phasing	39	Digital Input Pins on the Aux I/O Connector	75
Brushless Motor Unpowered Motor and Feedback	40	Digital Input Specifications (Aux I/O Connector)	75
Phasing	40	Digital Input Specifications [-EB1]	94
		Digital Inputs (Aux I/O Connector)	75
С		Digital Inputs [-EB1]	94
Cable Wires		Digital Inputs Connected to a Current Sinking Device [-	0.0
Brushless Motors	38	EB1]	96
DC Brush Motors	41	Digital Inputs Connected to a Current Sourcing Device [- EB1]	- 96
Stepper Motors	42	Digital Inputs Connected to Current Sinking Devices (Au	X
Cables		I/O Connector)	76
HyperWire	81	Digital Inputs Connected to Current Sourcing Devices	7.0
Sync Port	84	(Aux I/O Connector)	76
Cables and Accessories	101	Digital Output 1 Connector [-EB1] Mating Connector Par Numbers	rt 91
cables, examining	106	Digital Output 1 Connector Pinout [-EB1]	91
Check for fluids or electrically conductive material	106	Digital Output 2 Connector [-EB1] Mating Connector Par	
exposure Cleaning	106	Numbers	91
Commands	100	Digital Output 2 Connector Pinout [-EB1]	91
Sync	84	Digital Output Pins (Aux I/O Connector)	72
Conducted and Radiated Emissions	9	Digital Output Schematic (Aux I/O Connector)	73
connections, examining	106	Digital Output Specifications (Aux I/O Connector)	72
Continuous Output Current specifications	21	Digital Output Specifications [-EB1]	90
Control Board Fuse Specifications	107	Digital Outputs (Aux I/O Connector)	72
Control Supply Connections	27	Digital Outputs [-EB1]	90
Control Supply Connector	27	Digital Outputs Connected in Current Sinking Mode (Au	
Mating Connector Part Numbers	27	I/O Connector)	74
Wiring Specifications	27	Digital Outputs Connected in Current Sinking Mode [-EB	
Control Supply specifications	21	Digital Outputs Connected in Current Sourcing Mode (A I/O Connector)	ux 74
cooling vents, inspecting	106	Digital Outputs Connected in Current Sourcing Mode [-	, .
Customer order number	13	EB1]	93
		Digital Outputs Schematic [-EB1]	92
D		Dimensions	23
DC Brush Motor Configuration (Motor Power Output		Dimensions (without -EB1)	23
Connector)	41	Dimensions with -EB1	24
DC Brush Motor Connections (Motor Power Output		Drawing number	13
Connector)	41	Drive and Software Compatibility	25
DC Brush Motor Phasing	41		
Declaration of Conformity	9	E	
Differential Analog Input Specifications [-EB1]	98	Efficiency of Power Amplifier specifications	21

114

Electrical Safety for Power Drive Systems	9	Feedback Monitoring	39
Electrical Specifications	21	Figure	
Electromagnetic Compatibility (EMC)	9	-EB1 I/O Option Board Connectors	89
EMC/CE Compliance	36	Absolute Encoder Schematic (Auxiliary I/O Connector) 67
Enclosure	22	Absolute Encoder Schematic (Feedback Connector)	47
encoder		Analog Encoder Schematic (Auxiliary I/O Connector)	69
absolute	47,67	Analog Input 0 Schematic (Aux I/O Connector)	79
Encoder and Hall Signal Diagnostics	39	Analog Input Typical Connection [-EB1]	98
Encoder Fault Input (Feedback Connector)	53	Analog Output 0 Schematic (Aux I/O Connector)	78
Encoder Fault Input Pin on the Feedback Connector	53	Analog Output Typical Connection [-EB1]	97
Encoder Input (Feedback Connector)	45	Brake Connected to the Feedback Connector	57
Encoder Input Pins on the Feedback Connector	45	Brushless Motor Configuration (Motor Power Output	
Encoder Phasing	50	Connector)	38
Encoder Phasing Reference Diagram	50	Control Supply Connections	27
End of Travel Limit Input (Feedback Connector)	54	DC Brush Motor Configuration (Motor Power Output	4.4
End of Travel Limit Input Connections	55	Connector)	41 -
End of Travel Limit Input Diagnostic Display	56	Digital Inputs Connected to a Current Sinking Device EB1]	L- 96
End of Travel Limit Input Pins on the Feedback Conn	ector 54	Digital Inputs Connected to a Current Sourcing Device	
End of Travel Limit Phasing	56	[-EB1]	96
EnDat absolute encoder	47,67	Digital Inputs Connected to Current Sinking Devices	
Environmental Specifications	25	(Aux I/O Connector)	76
EU 2015/863	9	Digital Inputs Connected to Current Sourcing Devices	
examining parts		(Aux I/O Connector)	76
cables	106	Digital Output Schematic (Aux I/O Connector)	73
connections	106	Digital Outputs Connected in Current Sinking Mode (Aux I/O Connector)	74
examining, dangerous fluids	106	Digital Outputs Connected in Current Sourcing Mode	
examining, dangerous material	106	(Aux I/O Connector)	74
External Shunt Option [-SX1]	82	Digital Outputs Schematic [-EB1]	92
		Dimensions (without -EB1)	23
F		Dimensions with -EB1	24
Feedback Connector	44	End of Travel Limit Input Connections	55
Absolute Encoder	44 47	End of Travel Limit Input Diagnostic Display	56
Brake Outputs	47 57	Hall-Effect Inputs Schematic	51
Encoder Fault Input	53	High-Speed Inputs	77
·	35 45	Home Limit Input Connections	55
Encoder Input End of Travel Limit Input	45 54	Home Limit Input Diagnostic Display	56
·	54 51	Isolated Output Current Sinks Schematic (PSO)	100
Hall-Effect Inputs	54	Isolated Output Current Sources Schematic (PSO)	100
Home Limit Input Pinout		Motor Supply Connections	28
	44	Outputs Connected in Current Sinking Mode [-IO]	93
Primary Encoder Input	45 46	Outputs Connected in Current Sourcing Mode [-EB1]	93
RS-422 Line Driver Encoder	46 46	Positive Motor Direction	39
Square Wave Encoder	46	PSO Isolated Output Sinks Current	100
Thermistor Input	52	PSO Isolated Output Sources Current	100
Travel Limit Input	54	ı	

PSO TTL Outputs Schematic	100	inspecting cooling vents	106
Sine Wave Encoder Schematic (Auxiliary I/O		Inspection	106
Connector)	69	Installation and Configuration	27
Square Wave Encoder Inputs Schematic (Aux I/O		Installation Overview	14
Connector)	66	Introduction	17
Square Wave Encoder Schematic (Feedback Connector)	46	IP54 Compliant	22
Stepper Motor Configuration	42	Isolated Output Current Sinks Schematic (PSO)	100
STO Timing	63	Isolated Output Current Sources Schematic (PSO)	100
Thermistor Input Schematic	52	Isolation	21
Three Phase Stepper Motor Configuration	43		
TTL Outputs Schematic (PSO)	100	J	
Typical STO Configuration	59	Joystick Interface	102
fluids, dangerous	106	,,,	
Functional Diagram	20	L	
Fuse Specifications	107		
Control Supply at L	107	Laser Firing	70
External Shunt (-SX1)	107		
Motor Supply at AC1	107	М	
		Maintenance	105
н		material, electrically conductive	106
Hall Effect Feedback Ding on the Feedback Compactor	Г1	Mating Connector	
Hall-Effect Feedback Pins on the Feedback Connector	51 51	Analog Output Connector [-EB1]	97
Hall-Effect Inputs (Feedback Connector)	51 51	Mating Connector P/N	
Hall-Effect Inputs Schematic	51	Analog Input Connector [-EB1]	98
Handling	13	Aux I/O Connector	64
Handwheel Interconnection (to Aux I/O through a BBA: Module)	32 104	Brake Power Supply Connector	80
Handwheel Interconnection to the Aux I/O Connector	104	Control Supply Connector	27
Handwheel Interface	104	Digital Input 1 Connector [-EB1]	94
High-Speed Input Pins on the Aux I/O Connector	77	Digital Input 2 Connector [-EB1]	95
High-Speed Input Specifications	77	Digital Output 1 Connector [-EB1]	91
High-Speed Inputs	77	Digital Output 2 Connector [-EB1]	91
High-Speed User Inputs (Aux I/O Connector)	77	Feedback Connector	44
Home Limit Input (Feedback Connector)	54	Motor Power Output Connector	37
Home Limit Input Connections	55	Motor Supply Connector	28
Home Limit Input Diagnostic Display	56	PSO Connector [-EB1]	99
Home Limit Input Pins on the Feedback Connector	54	STO Connector	58
Humidity	25	Mechanical Specifications	22
HyperWire	81	Minimizing Conducted, Radiated, and System Noise for	
Cable Part Numbers	81	EMC/CE Compliance	36
Card Part Number	81	Minimum Load Inductance specifications	21
		Modes of Operation	21
I		Motor Connector	
		Mating Connector Part Numbers	44
I/O Option Board [-EB1]	89	Motor Function Relative to STO Input State	62
Input Power Connections	27		

Motor Power Output Connector		37	Digital Input 1 Connector [-EB1]	94
Brushless Motor Connections		38	Digital Input 2 Connector [-EB1]	95
DC Brush Motor Connections		41	Digital Input Pins (Aux I/O Connector)	75
Mating Connector Part Numbers		37	Digital Output 1 Connector [-EB1]	91
Pinout		37	Digital Output Pins (Aux I/O Connector)	72
Stepper Motor Connections		42	Encoder Fault Input Pin (Feedback Connector)	53
Three Phase Stepper Motor Con	nections	43	Encoder Input (Feedback Connector)	45
Motor Supply Connections		28	End of Travel Limit Input Pins (Feedback Connector)	54
Motor Supply Connector		28	Feedback Connector	44
Mating Connector Part Numbers	5	28	Hall-Effect Feedback Pins (Feedback Connector)	51
Wiring Specifications		28	High-Speed Input Pins (Aux I/O Connector)	77
Motor Supply specifications		21	Home Limit Input Pins (Feedback Connector)	54
Mounting and Cooling		22	Motor Power Output Connector	37
Mounting Hardware		22	Primary Encoder Inputs (Feedback Connector)	45
Mounting Orientation		22	PSO Interface Connector [-EB1]	99
			PSO Pins (Aux I/O Connector)	70
N			STO Connector	58
Nominal Motor Operating Voltages	/ Required AC		Thermistor Input Pin (Feedback Connector)	52
Voltages	qaca / .c	29	Pollution	25
			Position Feedback in the Diagnostic Display	50
0			Position Synchronized Output (Aux I/O Connector)	70
Operation		25	Position Synchronized Output (PSO) Interface [-EB1]	99
Output Voltage specifications		21	Positive Motor Direction	39
Overview		17	Power Amplifier Bandwidth specifications	21
Overview		17	Power Requirements	21
Р			Preventative Maintenance	106
			Primary Encoder Input (Feedback Connector)	45
packing list		13	Primary Encoder Input Pins on the Feedback Connector	45
PC Configuration and Operation Info	ormation	88	Protective Features	21
Peak Output Current specifications		21	PSO	
Phasing			Isolated Output Sinks Current Schematic	100
DC Brush Motor		41	Isolated Output Sources Current Schematic	100
End of Travel Limits		56	TTL Outputs Schematic	100
Powered Brushless Motor		39	PSO (Aux I/O Connector)	70
Stepper Motor		42-43	PSO Connector [-EB1] Mating Connector Part Numbers	99
Unpowered Brushless Motor/Fe	edback	40	PSO Interface Connector Pinout [-EB1]	99
Pinout			PSO Output Sources	70
Analog Input Connector [-EB1]		98	PSO Pins (Aux I/O Connector)	70
Analog Input Pins (Aux I/O Conne	ector)	79	PSO Specifications (Aux I/O Connector)	70
Analog Output Connector [-EB1]		97	PSO Specifications [-EB1]	99
Analog Output Pins (Aux I/O Con	inector)	78	PWM Switching Frequency specifications	21
Auxiliary I/O Connector		64		
Auxiliary I/O Pins (Aux I/O Conne	ector)	65	R	
Brake Output Connector		80	Resolute absolute encoder	47,67
Brake Output Pins (Feedback Connector)		57	Resolute absolute effecter	-7,07

Revision History	111	Square Wave Encoder Schematic (Feedback Connector)	46
RS-422 Encoder Specifications (Feedback Connector)	46,66	Square Wave Encoder Specifications (Feedback	
RS-422 Line Driver Encoder	46	-	46,66
RS-422 Line Driver Encoder (Auxiliary I/O Connector)	66	Standard Features	19
		Stepper Motor Configuration	42
S		Stepper Motor Connections (Motor Power Output Connector)	42
Safe Torque Off Input (STO)	58	Stepper Motor Phasing	42-43
Safety Procedures and Warnings	11	STO	58
serial data stream	47,67	Connector Pinout	58
serial number	13	Diagnostics	63
Sine Wave Encoder (Aux Connector)	68	Electrical Specifications	59
Sine Wave Encoder (Auxiliary I/O Connector)	48	External Delay Timer	61
Sine Wave Encoder Phasing Reference Diagram	68	Functional Description	61
Sine Wave Encoder Schematic (Auxiliary I/O Connecto	r) 69	Mating Connector Part Numbers	58
Sine Wave Encoder Specifications (Auxiliary I/O		Motor Function Relative to the STO Input State	62
Connector)	68	Signal Delay	62
Sine Wave Encoder Specifications (Feedback Connector	or) 48	Standards	60
Specifications		Standards Data	60
Analog Encoder (Auxiliary I/O Connector)	68	Startup Validation Testing	62
Analog Encoder (Feedback Connector)	48	Timing	63
Analog Input 0 (Aux I/O Connector)	79	Typical Configuration	59
Analog Output 0 (Aux I/O Connector)	78	Storage	13
Analog Outputs [-EB1]	97	Sync-Related Commands	84
Brake Control Relay	57	Sync Port Cables	84
Control Board Fuses	107	Sync Ports	84
Control Supply Connector Wiring	27	System part number	13
Differential Analog Inputs [-EB1]	98	System Power Requirements	21
Digital Inputs (Aux I/O Connector)	75		
Digital Inputs [-EB1]	94	Т	
Digital Outputs (Aux I/O Connector)	72	Table of Company	2
Digital Outputs [-EB1]	90	Table of Contents	3
High-Speed Inputs	77	Thermistor Input (Feedback Connector)	52
Motor Supply Connector Wiring	28	Thermistor Input Pin on the Feedback Connector	52
PSO (Aux I/O Connector)	70	Thermistor Input Schematic	52
PSO [-EB1]	99	Three Phase Stepper Motor Configuration	43
RS-422 Encoder (Feedback Connector)	46,66	Three Phase Stepper Motor Connections (Motor Power Output Connector)	43
Sine Wave Encoder (Auxiliary I/O Connector)	68	TM3	29
Sine Wave Encoder (Feedback Connector)	48	TM5	29
Square Wave Encoder (Feedback Connector)	46,66	Transformer Options	29
STO Electrical Specifications	59	Travel Limit Input (Feedback Connector)	54
Unit Weight	22	TTL Outputs Schematic (PSO)	100
Square Wave Encoder	46	TV0.3-28	29
Square Wave Encoder (Auxiliary I/O Connector)	66	TV0.3-28-56-ST Transformer	29
Square Wave Encoder Inputs Schematic (Aux I/O Connector)	66	TV0.3-28-56-ST Transformer (160 VDC Bus)	32

TV0.3-28-56-ST Transformer (40 VDC Bus)	30
TV0.3-28-56-ST Transformer (80 VDC Bus)	31
TV0.3-28 Transformer (40 VDC Bus)	33
TV0.3-56	29
TV0.3-56 Transformer (80 VDC Bus)	34
Two Axis Joystick Interface	102
Two Axis Joystick Interface (to the I/O board of two drives)	103
Typical STO Configuration	59
U	
Unit Weight	22
Use	25
User Power Supply specifications	21
W	
Warranty and Field Service	109
Wire Colors for Aerotech-Supplied Brushless Motor Cables	38
Wire Colors for Aerotech-Supplied DC Brush Motor Cables	41
Wire Colors for Aerotech-Supplied Stepper Motor Cables	42

This page intentionally left blank.